Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres

Abstract

The prospect of an all-fibre optical communications network in which light can be generated, modulated and detected within the fibre itself1,2,3,4,5,6,7,8,9,10,11 without the need for discrete optoelectronic devices is an appealing one. However, to become a reality, this approach requires the incorporation of optoelectronic materials and functionalities into silica fibres to create a new breed of semiconductor–fibre hybrid devices for performing various tasks. Here, we report the integration of precisely doped semiconductor materials and high-quality rectifying semiconductor junctions into microstructured optical fibres, enabling high-speed, in-fibre functionalities such as photodetection at telecommunications wavelengths. These semiconductor–fibre hybrid devices exhibit a bandwidth of up to 3 GHz and seamless coupling to standard single-mode optical fibres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integration of semiconductor junctions in MOFs.
Figure 2: Fibre integrated, waveguiding, semiconductor optoelectronic junctions.
Figure 3: High-speed photodetection with in-fibre Pt/n-Si diodes.
Figure 4: Light coupling in Pt/Ge/Si junction integrated MOFs.
Figure 5: Optical loss spectra of Pt/Ge/Si junction integrated MOF.

Similar content being viewed by others

References

  1. Gambling, W. A. The rise and rise of optical fibers. IEEE J. Sel. Top. Quantum Electron. 6, 1084–1092 (2000).

    Article  ADS  Google Scholar 

  2. Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Mater. 6, 336–347 (2007).

    Article  ADS  Google Scholar 

  3. Ballato, J. et al. Advancements in semiconductor core optical fiber. Opt. Fiber Technol. 16, 399–408 (2010).

    Article  ADS  Google Scholar 

  4. Benabid, F., Knight, J. C., Anthonopoulos, G. & Russell, P. St. J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fibre. Science 298, 399–402 (2002).

    Article  ADS  Google Scholar 

  5. Alkeskjold, T. T., Laegsgaard, J. & Bjarklev, A. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt. Express 12, 5857–5871 (2004).

    Article  ADS  Google Scholar 

  6. Kerbage, C., Hale, A., Yablon, A., Windeler, R. S. & Eggleton, B. J. Integrated all-fibre variable attenuator based on hybrid microstructure fibre. Appl. Phys. Lett. 79, 3191–3194 (2001).

    Article  ADS  Google Scholar 

  7. Fokine, M. et al. Integrated fiber Mach–Zehnder interferometer for electro-optic switching. Opt. Lett. 27, 1643–1645 (2002).

    Article  ADS  Google Scholar 

  8. Lee, H. W., Schmidt, M. A., Tyagi, H. K., Sempere, L. P. & Russell, P. St. J. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl. Phys. Lett. 93, 111102 (2008).

    Article  ADS  Google Scholar 

  9. Schmidt, M. A. et al. All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers. Opt. Lett. 34, 1946–1948 (2009).

    Article  ADS  Google Scholar 

  10. Tyagi, H. K., Schmidt, M. A., Prill Sempere, L. & Russell, P. St. J. Optical properties of photonic crystal fibre with integral micron-sized Ge wire. Opt. Express 16, 17227–17236 (2008).

    Article  ADS  Google Scholar 

  11. Ballato, J. et al. Silicon optical fibre. Opt. Express 16, 18675–18683 (2008).

    Article  ADS  Google Scholar 

  12. Reed, G. T. (ed.) Silicon Photonics: the State of the Art (Wiley, 2008).

  13. Richardson, D. J., Nilsson, J. & Clarkson, W. A. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, B63–B92 (2010).

    Article  Google Scholar 

  14. Russell, P. St. J. Photonic crystal fibers. Science 299, 358–362 (2003).

    Article  ADS  Google Scholar 

  15. Monro, T. M. & Ebendorff-Heidepriem, H. Progress in microstructured optical fibres. Annu. Rev. Mater. Res. 36, 467–495 (2006).

    Article  ADS  Google Scholar 

  16. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley, 2007).

  17. Sazio, P. J. A. et al. Microstructured optical fibres as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006).

    Article  ADS  Google Scholar 

  18. Kamins, T. Polycrystalline Silicon for Integrated Circuits and Displays (Kluwer Academic Publishers, 1998).

  19. Sellai, A. & Dawson, P. Yield in inhomogeneous PtSi−n-Si Schottky photodetectors. Nucl. Instrum. Methods Phys. Res. A 567, 372–375 (2006).

    Article  ADS  Google Scholar 

  20. Kharadly, M. M. Z. & Lewis, J. E. Properties of dielectric-tube waveguides. Proc. IEE 116, 214–224 (1969).

    Google Scholar 

  21. Soref, R. A. Electrooptical effects in silicon. IEEE J. Quantum Electron. QE-23, 123–129 (1987).

    Article  ADS  Google Scholar 

  22. Schmidt, M. A., Prill Sempere, L. N., Tyagi, H. K., Poulton, C. G. & Russell, P. St. J. Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires. Phys. Rev. B. 77, 033417 (2008).

    Article  ADS  Google Scholar 

  23. Chesini, G. et al. All-fiber devices based on photonic crystal fibers with integrated electrodes. Opt. Express 17, 1660–1665 (2009).

    Article  ADS  Google Scholar 

  24. van Brakel, A., Grivas, C., Petrovich, M. N. & Richardson, D. J. Micro-channels machined in microstructured optical fibers by femtosecond laser. Opt. Express 15, 8731–8736 (2007).

    Article  ADS  Google Scholar 

  25. Casalino, M., Sirleto, L., Moretti, L. & Rendina, I. A silicon compatible resonant cavity enhanced photodetector working at 1.55 µm. Semicond. Sci. Technol. 23, 075001 (2008).

    Article  ADS  Google Scholar 

  26. Yin, T. et al. 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt. Express 15, 13965–13971 (2007).

    Article  ADS  Google Scholar 

  27. Zhu, S., Yu, M. B., Lo, G. Q. & Kwong, D. L. Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications. Appl. Phys. Lett. 92, 081103 (2008).

    Article  ADS  Google Scholar 

  28. Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photon. 2, 433–437 (2008).

    Article  ADS  Google Scholar 

  29. Sparks, J. R. et al. Zinc selenide optical fibers. Adv. Mater. 23, 1647–1651 (2011).

    Article  Google Scholar 

  30. Oskooi, A. F., Joannopoulos, J. D. & Johnson, S. G. Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers. Opt. Express 17, 10082–10090 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank N. F. Baril, J. A. Calkins, D. W. Keefer, P. Horak and Y. Zeng for helpful discussions and technical assistance. This work was supported by the Pennsylvania State University Materials Research Institute Nano Fabrication Network and the National Science Foundation (NSF) (Cooperative Agreement no. 0335765), National Nanotechnology Infrastructure Network, with Cornell University. The authors thank the EPSRC (EP/G028273/1), NSF (DMR-0806860, DMR-1107894) and Penn State Materials Research Science and Engineering Center (NSF DMR-0820404) for financial support. A. C. Peacock is a holder of a Royal Academy of Engineering fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.H., V.G., P.J.A.S. and J.V.B. designed the research. R.H. carried out the experiments and analysed the data. A.C.P. provided simulation support. N.H., J.R.S. and M.K. assisted with experiments. R.H., P.J.A.S. and J.V.B. wrote the manuscript. All authors contributed to the scientific discussion and revision of the manuscript.

Corresponding author

Correspondence to John V. Badding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, R., Sazio, P., Peacock, A. et al. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nature Photon 6, 174–179 (2012). https://doi.org/10.1038/nphoton.2011.352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing