Abstract

X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1,2,3,4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

  2. 2.

    Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

  3. 3.

    et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007).

  4. 4.

    Subnanometer-scale measurements of the interaction of ultrafast soft X-ray free-electron-laser pulses with matter. Phys. Rev. Lett. 98, 145502 (2007).

  5. 5.

    et al. First lasing and operation of an Ångstrom wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

  6. 6.

    , & Model for the dynamics of a water cluster in an X-ray free electron laser beam. Phys. Rev. E 70, 051904 (2004).

  7. 7.

    et al. On the feasibility of nanocrystal imaging using intense and ultrashort X-ray pulses. ACS Nano 5, 139–146 (2011).

  8. 8.

    , , & Soft-X-ray free-electron-laser interaction with materials. Phys. Rev. E 76, 046403 (2007).

  9. 9.

    , & Dynamics of biological molecules irradiated by short X-ray pulses. Phys. Rev. E 69, 051906 (2002).

  10. 10.

    , & Ionization and charge migration through strong internal fields in clusters exposed to intense X-ray pulses. Phys. Rev. A 79, 041201 (2009).

  11. 11.

    , , , & Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Q. Rev. Biophys. 41, 181–204 (2008).

  12. 12.

    et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

  13. 13.

    , & Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc. Natl Acad. Sci. USA 103, 4912–4917 (2006).

  14. 14.

    The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

  15. 15.

    A beginner's guide to radiation damage. J. Synchr. Rad. 16, 133–142 (2009).

  16. 16.

    X-ray atomic scattering factors of low-z ions with a core hole. Phys. Rev. A 76, 042511 (2007).

  17. 17.

    & Biomolecular imaging and electronic damage using X-ray free-electron lasers. Nature Phys. 7, 142–146 (2011).

  18. 18.

    X-Ray Diffraction 229 (Dover, 1990).

  19. 19.

    Cretin—a radiative transfer capability for laboratory plasmas. J. Quant. Spect. Radiat. Transf. 71, 689–701 (2001).

  20. 20.

    et al. Femtosecond electronic response of atoms to ultra intense X-rays. Nature 466, 56–61 (2010).

  21. 21.

    AMO instrumentation for the LCLS X-ray FEL. Euro. Phys. J. Special Topics 169, 129–132 (2009).

  22. 22.

    et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Meth. Phys. Res. A 614, 483–496 (2010).

  23. 23.

    et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D 41, 195505 (2008).

  24. 24.

    et al. Femtosecond protein nanocrystallography—data analysis methods. Opt. Express 18, 5713–5723 (2010).

  25. 25.

    Simulations of radiation damage in biomolecular nanocrystals induced by femtosecond X-ray pulses. J. Mod. Opt. 58, 1486–1497 (2011).

  26. 26.

    et al. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-X-ray laser. Phys. Rev. E 83, 016403 (2011).

Download references

Acknowledgements

Experiments were carried out at the Linac Coherent Light Source national user facilities operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences. The authors acknowledge support from the Helmholtz Association, the Max Planck Society for funding the development and operation of the CAMP instrument within the ASG at CFEL, the DOE through the PULSE Institute at the SLAC National Accelerator Laboratory, and the Lawrence Livermore National Laboratory (contract DE-AC52-07NA27344), the US National Science Foundation (awards 0417142 and MCB-1021557), the US National Institutes of Health (awards 1R01GM095583-01 (ROADMAP) and 1U54GM094625-01 (PSI:Biology)), the Joachim Herz Stiftung and the Swedish Research Council. The authors also thank the staff of the LCLS for their support in carrying out these experiments, and D. van der Spoel for providing computational resources.

Author information

Author notes

    • Anton Barty
    •  & Carl Caleman

    These authors contributed equally to this work

    • Nicola Coppola
    •  & M. Marvin Seibert

    Present address: European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany (N.C.), LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road. Menlo Park, California 94025, USA (M.M.S.)

Affiliations

  1. Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany

    • Anton Barty
    • , Carl Caleman
    • , Andrew Aquila
    • , Thomas A. White
    • , Nicola Coppola
    • , Daniel P. DePonte
    • , Holger Fleckenstein
    • , Lars Gumprecht
    • , Mengning Liang
    • , Andrew V. Martin
    • , Joachim Schulz
    • , Francesco Stellato
    • , Stephan Stern
    •  & Henry N. Chapman
  2. Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden

    • Nicusor Timneanu
    • , Jakob Andreasson
    • , Tomas Ekeberg
    • , Janos Hajdu
    •  & M. Marvin Seibert
  3. Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany

    • Lukas Lomb
    • , Thomas R. M. Barends
    • , Lutz Foucar
    • , Stephan Kassemeyer
    • , Daniel Rolles
    • , Ilme Schlichting
    •  & Robert L. Shoeman
  4. Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany

    • Lukas Lomb
    • , Thomas R. M. Barends
    • , Sascha W. Epp
    • , Benjamin Erk
    • , Lutz Foucar
    • , Stephan Kassemeyer
    • , Daniel Rolles
    • , Benedikt Rudek
    • , Artem Rudenko
    • , Ilme Schlichting
    • , Robert L. Shoeman
    • , Lothar Strüder
    •  & Joachim Ullrich
  5. Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, SE-405 30 Gothenburg, Sweden

    • David Arnlund
    • , Linda Johansson
    • , Erik Malmerberg
    •  & Richard Neutze
  6. Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany

    • Saša Bajt
    • , Miriam Barthelmess
    • , Heinz Graafsma
    • , Helmut Hirsemann
    •  & Cornelia B. Wunderer
  7. Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    • Michael J. Bogan
    • , Christina Y. Hampton
    •  & Raymond G. Sierra
  8. LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    • Christoph Bostedt
    • , John D. Bozek
    •  & Ryan Coffee
  9. Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120 Uppsala, Sweden

    • Jan Davidsson
  10. Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

    • R. Bruce Doak
    • , Richard A. Kirian
    • , John C. H. Spence
    • , X. Wang
    •  & Uwe Weierstall
  11. Department of Physics, Cornell University, Ithaca, New York 14853, USA

    • Veit Elser
  12. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

    • Sascha W. Epp
    • , Benjamin Erk
    • , Benedikt Rudek
    • , Artem Rudenko
    •  & Joachim Ullrich
  13. Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA

    • Petra Fromme
    •  & Mark S. Hunter
  14. PNSensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany

    • Robert Hartmann
    • , Andreas Hartmann
    • , Peter Holl
    • , Christian Reich
    •  & Heike Soltau
  15. Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany

    • Günter Hauser
    • , Nils Kimmel
    • , Lothar Strüder
    •  & Georg Weidenspointner
  16. Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany

    • Günter Hauser
    • , Nils Kimmel
    •  & Georg Weidenspointner
  17. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • Filipe R. N. C. Maia
    •  & Stefano Marchesini
  18. University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

    • Karol Nass
    •  & Henry N. Chapman
  19. Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA

    • Howard Scott

Authors

  1. Search for Anton Barty in:

  2. Search for Carl Caleman in:

  3. Search for Andrew Aquila in:

  4. Search for Nicusor Timneanu in:

  5. Search for Lukas Lomb in:

  6. Search for Thomas A. White in:

  7. Search for Jakob Andreasson in:

  8. Search for David Arnlund in:

  9. Search for Saša Bajt in:

  10. Search for Thomas R. M. Barends in:

  11. Search for Miriam Barthelmess in:

  12. Search for Michael J. Bogan in:

  13. Search for Christoph Bostedt in:

  14. Search for John D. Bozek in:

  15. Search for Ryan Coffee in:

  16. Search for Nicola Coppola in:

  17. Search for Jan Davidsson in:

  18. Search for Daniel P. DePonte in:

  19. Search for R. Bruce Doak in:

  20. Search for Tomas Ekeberg in:

  21. Search for Veit Elser in:

  22. Search for Sascha W. Epp in:

  23. Search for Benjamin Erk in:

  24. Search for Holger Fleckenstein in:

  25. Search for Lutz Foucar in:

  26. Search for Petra Fromme in:

  27. Search for Heinz Graafsma in:

  28. Search for Lars Gumprecht in:

  29. Search for Janos Hajdu in:

  30. Search for Christina Y. Hampton in:

  31. Search for Robert Hartmann in:

  32. Search for Andreas Hartmann in:

  33. Search for Günter Hauser in:

  34. Search for Helmut Hirsemann in:

  35. Search for Peter Holl in:

  36. Search for Mark S. Hunter in:

  37. Search for Linda Johansson in:

  38. Search for Stephan Kassemeyer in:

  39. Search for Nils Kimmel in:

  40. Search for Richard A. Kirian in:

  41. Search for Mengning Liang in:

  42. Search for Filipe R. N. C. Maia in:

  43. Search for Erik Malmerberg in:

  44. Search for Stefano Marchesini in:

  45. Search for Andrew V. Martin in:

  46. Search for Karol Nass in:

  47. Search for Richard Neutze in:

  48. Search for Christian Reich in:

  49. Search for Daniel Rolles in:

  50. Search for Benedikt Rudek in:

  51. Search for Artem Rudenko in:

  52. Search for Howard Scott in:

  53. Search for Ilme Schlichting in:

  54. Search for Joachim Schulz in:

  55. Search for M. Marvin Seibert in:

  56. Search for Robert L. Shoeman in:

  57. Search for Raymond G. Sierra in:

  58. Search for Heike Soltau in:

  59. Search for John C. H. Spence in:

  60. Search for Francesco Stellato in:

  61. Search for Stephan Stern in:

  62. Search for Lothar Strüder in:

  63. Search for Joachim Ullrich in:

  64. Search for X. Wang in:

  65. Search for Georg Weidenspointner in:

  66. Search for Uwe Weierstall in:

  67. Search for Cornelia B. Wunderer in:

  68. Search for Henry N. Chapman in:

Contributions

H.N.C., J.C.H.S., A.B. and P.F. conceived the experiment, which was designed with T.A.W., R.A.K., J.S., D.D.P., U.W., R.B.D., S.Bo., M.J.B., D.S., I.S., S.M. and J.H. The CAMP instrument was the responsibility of S.W.E., R.H., D.R., A.R., L.F., N.K., P.H., B.R., B.E., A.H., Ch.R., G.W., L.S., G.H., H.G., J.U., I.S., H.So., H.H., L.G., H.G. and C.W., who operated the pnCCD detectors. C.B., J.B. and M.M. set up and aligned the beamline. P.F., M.S.H. and I.G. prepared samples. R.B.D., D.D.P., U.W., J.C.H.S., P.F., L.L. and R.L.S. developed and operated the sample delivery system. H.N.C., A.B., A.A., J.S., D.P.P., U.W., R.B.D., S.Ba., M.J.B., L.G., J.H., M.M.S., N.T., J.A., S.St. and J.C.H.S. developed diffraction instrumentation. M.B., M.L., A.B. and K.N. designed and/or fabricated calibration samples. H.N.C., J.C.H.S., P.F., A.B., T.A.W., R.A.K., C.C., A.A., L.L., J.S., D.P.D., U.W., R.B.D., I.S., N.C., R.L.S., M.S.H., M.B., S.W.E., R.H., D.R., A.R., S.K., T.E., M.L., C.B., J.U., L.F., J.D.B., M.M., M.F., C.Y.H., R.G.S., G.J.W., A.R., M.S., O.J., I.A. and J.H. carried out the experiment. A.B, C.C., N.T. and H.N.C. developed the theory, and analysed the data with L.L., T.A.W., I.S. and T.R.M.B. N.T., C.C. and H.S. carried out the Cretin simulations. A.B., C.C. and H.N.C. wrote the manuscript with discussion and improvements from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Anton Barty or Henry N. Chapman.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Videos

  1. 1.

    Supplementary information

    Supplementary Movie

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2011.297

Further reading