Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond


The nature of the transition between the familiar classical, macroscopic world and the quantum, microscopic one continues to be poorly understood. Expanding the regime of observable quantum behaviour to large-scale objects is therefore an exciting open problem1. In macroscopic systems of interacting particles, rapid thermalization usually destroys any quantum coherence before it can be measured or used at room temperature2. Here, we demonstrate quantum processing in the vibrational modes of a macroscopic diamond sample under ambient conditions. Using ultrafast Raman scattering, we create an extended, highly non-classical state in the optical phonon modes of bulk diamond. Direct measurement of phonon coherence and correlations establishes the non-classical nature of the crystal dynamics. These results show that optical phonons in diamond provide a unique opportunity for the study of large-scale quantum behaviour, and highlight the potential for diamond as a micro-photonic quantum processor capable of operating at terahertz rates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Raman quantum memory and decoherence measurement in diamond.
Figure 2: Non-classical correlations in the quantum memory.
Figure 3: Population and coherence of non-classical phonons versus read–write delay.


  1. 1

    Aspelmeyer, M., Gröblacher, S., Hammerer, K. & Kiesel, N. Quantum optomechanics—throwing a glance. J. Opt. Soc. Am. B 27, A189–A197 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Zurek, W. Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Milburn, G. Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Ellis, J., Mohanty, S. & Nanopoulos, D. Quantum gravity and the collapse of the wavefunction. Phys. Lett. B 221, 113–119 (1989).

    ADS  Article  Google Scholar 

  5. 5

    Strunz, W., Haake, F. & Braun, D. Universality of decoherence for macroscopic quantum superpositions. Phys. Rev. A 67, 022101 (2003).

    ADS  Article  Google Scholar 

  6. 6

    Gauger, E., Rieper, E., Morton, J., Benjamin, S. & Vedral, V. Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106, 40503 (2011).

    ADS  Article  Google Scholar 

  7. 7

    Cho, A. Faintest thrum heralds quantum machines. Science 327, 516–518 (2010).

    ADS  Article  Google Scholar 

  8. 8

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  9. 9

    Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Walmsley, I. Looking to the future of quantum optics. Science 319, 1211–1213 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Smith, B. J., Kundys, D., Thomas-Peter, N., Smith, P. G. R. & Walmsley, I. A. Phase-controlled integrated photonic quantum circuits. Opt. Express. 17, 13516–13525 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

    ADS  Article  Google Scholar 

  13. 13

    Lvovsky, A., Sanders, B. & Tittel, W. Optical quantum memory. Nature Photon. 3, 706–714 (2009).

    ADS  Article  Google Scholar 

  14. 14

    Hammerer, K., Sørensen, A. & Polzik, E. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Jiang, W., Han, C., Xue, P., Duan, L. & Guo, G. Nonclassical photon pairs generated from a room-temperature atomic ensemble. Phys. Rev. A 69, 043819 (2004).

    ADS  Article  Google Scholar 

  16. 16

    Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2004).

  17. 17

    Waldermann, F. et al. Measuring phonon dephasing with ultrafast pulses using Raman spectral interference. Phys. Rev. B 78, 155201 (2008).

    ADS  Article  Google Scholar 

  18. 18

    Lee, K. C. et al. Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy. Diam. Rel. Mater. 19, 1289–1295 (2010).

    Article  Google Scholar 

  19. 19

    Lobino, M., Kupchak, C., Figueroa, E. & Lvovsky, A. Memory for light as a quantum process. Phys. Rev. Lett. 102, 203601 (2009).

    ADS  Article  Google Scholar 

  20. 20

    Debernardi, A., Baroni, S. & Molinari, E. Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75, 1819–1822 (1995).

    ADS  Article  Google Scholar 

  21. 21

    Liu, M., Bursill, L., Prawer, S. & Beserman, R. Temperature dependence of the first-order Raman phonon line of diamond. Phys. Rev. B 61, 3391–3395 (2000).

    ADS  Article  Google Scholar 

  22. 22

    Klemens, P. Anharmonic decay of optical phonons. Phys. Rev. 148, 845–848 (1966).

    ADS  Article  Google Scholar 

  23. 23

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Catellani, A. & Sorba, L. Acoustic-wave transmission in semiconductor superlattices. Phys. Rev. B 38, 7717–7722 (1988).

    ADS  Article  Google Scholar 

  25. 25

    Hass, K. C., Tamor, M. A., Anthony, T. R. & Banholzer, W. F. Lattice dynamics and raman spectra of isotopically mixed diamond. Phys. Rev. B 45, 7171–7182 (1992).

    ADS  Article  Google Scholar 

  26. 26

    Chrenko, R. 13C-doped diamond: Raman spectra. J. Appl. Phys. 63, 5873–5875 (1988).

    ADS  Article  Google Scholar 

  27. 27

    Duan, L., Cirac, J. & Zoller, P. Three-dimensional theory for interaction between atomic ensembles and free-space light. Phys. Rev. A 66, 023818 (2002).

    ADS  Article  Google Scholar 

  28. 28

    Sørensen, M. & Sørensen, A. Three-dimensional theory of stimulated Raman scattering. Phys. Rev. A 80, 033804 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Hayes, W. & Loudon, R. Scattering of Light by Crystals (Dover Publications, 2004).

  30. 30

    Hornstra, J. Dislocations in the diamond lattice. J. Phys. Chem. Solids 5, 129–141 (1958).

    ADS  Article  Google Scholar 

Download references


This work was supported by the QIPIRC (Quantum Information Processing Interdisciplinary Research Collaboration) and EPSRC (Engineering and Physical Sciences Research Council) (grant no. GR/S82176/01), EU ITN (European Union International Training Network) EMALI (Engineering, Manipulation and Characterization of Quantum States of Matter and Light), EU IP (Integrated Project) Q-ESSENCE (Quantum Interfaces, Sensors, and Communication based on Entanglement), EU ITN FASTQUAST (Ultrafast Control of Quantum Systems by Strong Laser Fields), Toshiba Research Europe, Clarendon Fund, NSERC (Natural Sciences and Engineering Research Council of Canada), and a Royal Society/Wolfson Research Merit Award. The authors are grateful to S. Prawer for useful discussions.

Author information




K.C.L. built the experiment with assistance from B.J.S. and M.R.S. and collected the data. K.C.L., B.J.S. and J.N. contributed to the theoretical analysis. K.F.R., P.M., N.K.L., P.J.B. and D.J. provided useful insights, and I.A.W. and B.J.S. conceived the experiment. The manuscript was written by K.C.L. with input from B.J.S., J.N., N.K.L., M.R.S. and I.A.W.

Corresponding authors

Correspondence to B. J. Sussman or I. A. Walmsley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, K., Sussman, B., Sprague, M. et al. Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond. Nature Photon 6, 41–44 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing