Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A photon-driven micromotor can direct nerve fibre growth



Axonal path-finding is important in the development of the nervous system, nerve repair and nerve regeneration. The behaviour of the growth cone at the tip of the growing axon determines the direction of axonal growth and migration. We have developed an optical-based system to control the direction of growth of individual axons (nerve fibres) using laser-driven spinning birefringent spheres. One or two optical traps position birefringent beads adjacent to growth cones of cultured goldfish retinal ganglion cell axons. Circularly polarized light with angular momentum causes the trapped bead to spin. This creates a localized microfluidic flow generating an estimated 0.17 pN shear force against the growth cone that turns in response to the shear. The direction of axonal growth can be precisely manipulated by changing the rotation direction and position of this optically driven micromotor. A physical model estimating the shear force density on the axon is described.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Time-lapse images when a vaterite particle is rotated anticlockwise and positioned to the left of the axon defined by the growth direction of the axon (dashed arrow 1).
Figure 2: Time-lapse images when a vaterite particle is rotated clockwise and positioned to the left of the axon defined by the axon growth direction (dashed arrow 1).
Figure 3: Prolonged time-lapse images: changing the position and rotation direction of a vaterite particle to control the axonal growth direction.
Figure 4: Two vaterite particles were trapped and rotated in opposite directions.
Figure 5: Plot of the shear force per unit area calculated using the proposed model.


  1. Ming, G. L. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002).

    ADS  Article  Google Scholar 

  2. Patel, N. & Poo, M. M. Orientation of neurite growth by extracellular electric–fields. J. Neurosci. 2, 483–496 (1982).

    Article  Google Scholar 

  3. Patel, N. B. & Poo, M. M. Perturbation of the direction of neurite growth by pulsed and focal electric-fields. J. Neurosci. 4, 2939–2947 (1984).

    Article  Google Scholar 

  4. Blau, A. et al. Promotion of neural cell adhesion by electrochemically generated and functionalized polymer films. J. Neurosci. Meth. 112, 65–73 (2001).

    Article  Google Scholar 

  5. Luo, Y. & Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Mater. 3, 249–253 (2004).

    ADS  Article  Google Scholar 

  6. Wu, T. et al. Neuronal growth cones respond to laser-induced axonal damage. J. R. Soc. Interface (2011).

  7. Ehrlicher, A. et al. Guiding neuronal growth with light. Proc. Natl Acad. Sci. USA 99, 16024–16028 (2002).

    ADS  Article  Google Scholar 

  8. Stevenson, D. J. et al. Optically guided neuronal growth at near infrared wavelengths. Opt. Express 14, 9786–9793 (2006).

    ADS  Article  Google Scholar 

  9. Carnegie, D. J., Stevenson, D. J., Mazilu, M., Gunn-Moore, F. & Dholakia, K. Guided neuronal growth using optical line traps. Opt. Express 16, 10507–10517 (2008).

    ADS  Article  Google Scholar 

  10. Mathew, M. et al. Signalling effect of NIR pulsed lasers on axonal growth. J. Neurosci. Meth. 186, 196–201 (2010).

    Article  Google Scholar 

  11. Harris, W. A., Holt, C. E. & Bonhoeffer, F. Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos—a time-lapse video study of single fibers in vivo. Development 101, 123–133 (1987).

    Google Scholar 

  12. Lowery, L. A. & Van Vactor, D. The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 10, 332–343 (2009).

    Article  Google Scholar 

  13. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    ADS  Article  Google Scholar 

  14. Bishop, A. I., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104 (2004).

    ADS  Article  Google Scholar 

  15. Parkin, S. J. et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. Opt. Express 17, 21944–21955 (2009).

    ADS  Article  Google Scholar 

  16. Knöner, G., Parkin, S., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Characterization of optically driven fluid stress fields with optical tweezers. Phys. Rev. E 72, 031507 (2005).

    ADS  Article  Google Scholar 

  17. Di Leonardo, R. et al. Multipoint holographic optical velocimetry in microfluidic systems. Phys. Rev. Lett. 96, 134502 (2006).

    ADS  Article  Google Scholar 

  18. Leach, J., Mushfique, H., di Leonardo, R., Padgett, M. & Cooper, J. An optically driven pump for microfluidics. Lab. Chip 6, 735–739 (2006).

    Article  Google Scholar 

  19. Franze, K. & Guck, J. The biophysics of neuronal growth. Rep. Prog. Phys. 73, 1–19 (2010).

    Article  Google Scholar 

  20. Hudspeth, A. J. Making an effort to listen: mechanical amplification in the ear. Neuron 59, 530–545 (2008).

    Article  Google Scholar 

  21. Ishijima, A., Doi, T., Sakurada, K. & Yanagida, T. Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352, 301–306 (1991).

    ADS  Article  Google Scholar 

  22. Liu, Y. et al. Evidence for localized cell heating induced by infrared optical tweezers. Biophys. J. 68, 2137–2144 (1995).

    ADS  Article  Google Scholar 

  23. Tamada, A., Kawase, S., Murakami, F. & Kamiguchi, H. Autonomous right-screw rotation of growth cone filopodia drives neurite turning. J. Cell Biol. 188, 429–441 (2010).

    Article  Google Scholar 

  24. Cojoc, D. et al. Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PloS One 2, e1072 (2007).

    ADS  Article  Google Scholar 

  25. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).

    ADS  Article  Google Scholar 

  26. Hoffman-Kim, D., Mitchel, J. A. & Bellamkonda, R. V. Topography, cell response, and nerve regeneration. Annu. Rev. Biomed. Eng. 12, 203–231 (2010).

    Article  Google Scholar 

  27. Oldenbourg, R., Katoh, K. & Danuser, G. Mechanism of lateral movement of filopodia and radial actin bundles across neuronal growth cones. Biophys. J. 78, 1176–1182 (2000).

    Article  Google Scholar 

  28. Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097–1106 (1999).

    Article  Google Scholar 

  29. Bates, C. A. & Meyer, R. L. Heterotrimeric G protein activation rapidly inhibits outgrowth of optic axons from adult and embryonic mouse, and goldfish retinal explants. Brain Res. 714, 65–75 (1996).

    ADS  Article  Google Scholar 

  30. Landreth, G. E. & Agranoff, B. W. Explant culture of adult goldfish retina: a model for the study of CNS regeneration. Brain Res. 161, 39–53 (1979).

    Article  Google Scholar 

  31. Parkin, S. et al. Optical torque on microscopic objects. Methods Cell Biol. 82, 525–561 (2007).

    Article  Google Scholar 

Download references


The authors thank H. Tucker for discussions on statistics and the software used to calculate the P-values of the Irwin–Fisher Exact Test, and S. George, H. Chan and C. Robertson for measuring the viscosity of the culture medium. This research was supported by a grant from the US Air Force Office of Scientific Research (no. FA9550-10-1-0538 to M.W.B.), a gift from the Beckman Laser Institute Foundation (to M.W.B.), a grant from the Australian Research Council (to T.A.N. and H.R.) and a School of Biological Sciences grant (to R.L.M.).

Author information

Authors and Affiliations



T.W. performed all the experiments reported in this paper. S.M. performed seminal experiments that led to the studies reported here. T.A.N. and H.R.-D. developed the physical approximation model. J.M. prepared the goldfish retinal explant cultures. T.W., T.A.N., R.L.M., H.R.-D. and M.W.B. analysed the data. T.W., T.A.N., J.M., R.L.M., H.R.-D. and M.W.B. wrote the paper.

Corresponding author

Correspondence to Michael W. Berns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 474 kb)

Supplementary information

Supplementary Movie (MOV 397 kb)

Supplementary information

Supplementary Movie (MOV 645 kb)

Supplementary information

Supplementary Movie (MOV 4239 kb)

Supplementary information

Supplementary Movie (MOV 218 kb)

Supplementary information

Supplementary Movie (MOV 239 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, T., Nieminen, T., Mohanty, S. et al. A photon-driven micromotor can direct nerve fibre growth. Nature Photon 6, 62–67 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing