Article | Published:

Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit

Nature Photonics volume 6, pages 4549 (2012) | Download Citation

Subjects

Abstract

Entanglement is the quintessential quantum-mechanical phenomenon understood to lie at the heart of future quantum technologies and the subject of fundamental scientific investigations. Mixture, resulting from noise, is often an unwanted result of interaction with an environment, but is also of fundamental interest, and is proposed to play a role in some biological processes. Here, we report an integrated waveguide device that can generate and completely characterize pure two-photon states with any amount of entanglement and arbitrary single-photon states with any amount of mixture. The device consists of a reconfigurable integrated quantum photonic circuit with eight voltage-controlled phase shifters. We demonstrate that, for thousands of randomly chosen configurations, the device performs with high fidelity. We generate maximally and non-maximally entangled states, violate a Bell-type inequality with a continuum of partially entangled states, and demonstrate the generation of arbitrary one-qubit mixed states.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  2. 2.

    Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).

  3. 3.

    Simulating physics with computers. Int. J. Theor. Phy. 21, 467–488 (1982).

  4. 4.

    Universal quantum simulators. Science 273, 1073–1078 (1996).

  5. 5.

    & Quantum communication. Nature Photon. 1, 165–171 (2007).

  6. 6.

    , & Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

  7. 7.

    Quantum optical metrology — the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).

  8. 8.

    , & Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

  9. 9.

    , , , & All-optical-fiber polarization-based quantum logic gate. Phys. Rev. A 79, 030303 (2009).

  10. 10.

    , & Ultrafast switching of photonic entanglement. Phys. Rev. Lett. 106, 053901 (2011).

  11. 11.

    , , , & Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

  12. 12.

    , , & Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).

  13. 13.

    , , , & Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009).

  14. 14.

    , & Shor's quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).

  15. 15.

    et al. Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010).

  16. 16.

    et al. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010).

  17. 17.

    , , , & Multimode quantum interference of photons in multiport integrated devices. Nature Commun. 2, 224 (2011).

  18. 18.

    , & Differential-phase-shift quantum key distribution experiment with aplanar light-wave circuit Mach–Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004).

  19. 19.

    , , & Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65, 062324 (2002).

  20. 20.

    & Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308 (2002).

  21. 21.

    , , & Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

  22. 22.

    , & Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

  23. 23.

    & Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).

  24. 24.

    et al. Operating quantum waveguide circuits with superconducting single-photon detectors. Appl. Phys. Lett. 96, 211101 (2010).

  25. 25.

    , , & Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

  26. 26.

    , , & Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

  27. 27.

    , , & Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008).

  28. 28.

    , , & Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).

  29. 29.

    & Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

  30. 30.

    et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008).

  31. 31.

    et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

  32. 32.

    , , , & Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005).

  33. 33.

    & Induced measures in the space of mixed quantum states. J. Phys. A. 34, 7111–7125 (2001).

  34. 34.

    , , , & Multipath entanglement of two photons. Phys. Rev. Lett. 102, 153902 (2009).

  35. 35.

    , , , & Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. Phys. Rev. Lett. 103, 160401 (2009).

  36. 36.

    , , & Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate. Opt. Express 18, 20475–20490 (2010).

  37. 37.

    , , & Photonic circuits for generating modal, spectral, and polarization entanglement. IEEE Photon. J. 2, 736–752 (2010).

Download references

Acknowledgements

The authors thank N. Brunner, J. G. Rarity and P. Ivanov for helpful contributions. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), the European Research Council (ERC), Intelligence Advanced Research Projects Activity (IARPA), the Leverhulme Trust, the Centre for Nanoscience and Quantum Information (NSQI), PHORBITECH, the Quantum Information Processing Interdisciplinary Research Collaboration (QIP IRC), and the Quantum Integrated Photonics (QUANTIP) project. J.L.O'B. acknowledges a Royal Society Wolfson Merit Award. M.L. acknowledges the Marie Curie International Incoming Fellowship.

Author information

Affiliations

  1. Centre for Quantum Photonics, H. H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK

    • P. J. Shadbolt
    • , M. R. Verde
    • , A. Peruzzo
    • , A. Politi
    • , A. Laing
    • , M. Lobino
    • , J. C. F. Matthews
    • , M. G. Thompson
    •  & J. L. O'Brien

Authors

  1. Search for P. J. Shadbolt in:

  2. Search for M. R. Verde in:

  3. Search for A. Peruzzo in:

  4. Search for A. Politi in:

  5. Search for A. Laing in:

  6. Search for M. Lobino in:

  7. Search for J. C. F. Matthews in:

  8. Search for M. G. Thompson in:

  9. Search for J. L. O'Brien in:

Contributions

All authors contributed extensively to the work presented in this paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J. L. O'Brien.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2011.283

Further reading