Abstract
Entanglement is the quintessential quantum-mechanical phenomenon understood to lie at the heart of future quantum technologies and the subject of fundamental scientific investigations. Mixture, resulting from noise, is often an unwanted result of interaction with an environment, but is also of fundamental interest, and is proposed to play a role in some biological processes. Here, we report an integrated waveguide device that can generate and completely characterize pure two-photon states with any amount of entanglement and arbitrary single-photon states with any amount of mixture. The device consists of a reconfigurable integrated quantum photonic circuit with eight voltage-controlled phase shifters. We demonstrate that, for thousands of randomly chosen configurations, the device performs with high fidelity. We generate maximally and non-maximally entangled states, violate a Bell-type inequality with a continuum of partially entangled states, and demonstrate the generation of arbitrary one-qubit mixed states.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation
Nature Photonics Open Access 17 April 2023
-
Integrated photonics in quantum technologies
La Rivista del Nuovo Cimento Open Access 01 February 2023
-
High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source
Nature Communications Open Access 01 August 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phy. 21, 467–488 (1982).
Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).
Dowling, J. P. Quantum optical metrology — the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).
O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).
Clark, A. S., Fulconis, J., Rarity, J. G., Wadsworth, W. J. & O'Brien, J. L. All-optical-fiber polarization-based quantum logic gate. Phys. Rev. A 79, 030303 (2009).
Hall, M. A., Altepeter, J. B. & Kumar, P. Ultrafast switching of photonic entanglement. Phys. Rev. Lett. 106, 053901 (2011).
Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).
Matthews, J. C. F., Politi, A., Stefanov, A. & O'Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).
Smith, B. J., Kundys, D., Thomas-Peter, N., Smith, P. G. R. & Walmsley, I. A. Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009).
Politi, A., Matthews, J. C. F. & O'Brien, J. L. Shor's quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).
Sansoni, L. et al. Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010).
Laing, A. et al. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010).
Peruzzo, A., Laing, A., Politi, A., Rudolph, T. & O'Brien, J. L. Multimode quantum interference of photons in multiport integrated devices. Nature Commun. 2, 224 (2011).
Honjo, T., Inoue, K. & Takahashi, H. Differential-phase-shift quantum key distribution experiment with aplanar light-wave circuit Mach–Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004).
Ralph, T. C., Langford, N. K., Bell, T. B. & White, A. G. Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65, 062324 (2002).
Hofmann, H. F. & Takeuchi, S. Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308 (2002).
Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Burnham, D. C. & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).
Natarajan, C. M. et al. Operating quantum waveguide circuits with superconducting single-photon detectors. Appl. Phys. Lett. 96, 211101 (2010).
James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).
Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).
Lanyon, B. P., Barbieri, M., Almeida, M. P. & White, A. G. Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008).
Mohseni, M., Rebentrost, P., Lloyd, S. & Guzik, A. A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).
Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).
Perets, H. B. et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008).
Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).
Peters, N. A., Barreiro, J. T., Goggin, M. E., Wei, T. C. & Kwiat, P. G. Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005).
Zyczkowski, K. & Sommers, H-J. Induced measures in the space of mixed quantum states. J. Phys. A. 34, 7111–7125 (2001).
Rossi, A., Vallone, G., Chiuri, A., De Martini, F. & Mataloni, P. Multipath entanglement of two photons. Phys. Rev. Lett. 102, 153902 (2009).
Ceccarelli, R., Vallone, G., De Martini, F., Mataloni, P. & Cabello, A. Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. Phys. Rev. Lett. 103, 160401 (2009).
Saleh, M. F., Di Giuseppe, G., Saleh, B. E. A. & Teich, M. C. Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate. Opt. Express 18, 20475–20490 (2010).
Saleh, M. F., Di Giuseppe, G., Saleh, B. E. A. & Teich, M. C. Photonic circuits for generating modal, spectral, and polarization entanglement. IEEE Photon. J. 2, 736–752 (2010).
Acknowledgements
The authors thank N. Brunner, J. G. Rarity and P. Ivanov for helpful contributions. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), the European Research Council (ERC), Intelligence Advanced Research Projects Activity (IARPA), the Leverhulme Trust, the Centre for Nanoscience and Quantum Information (NSQI), PHORBITECH, the Quantum Information Processing Interdisciplinary Research Collaboration (QIP IRC), and the Quantum Integrated Photonics (QUANTIP) project. J.L.O'B. acknowledges a Royal Society Wolfson Merit Award. M.L. acknowledges the Marie Curie International Incoming Fellowship.
Author information
Authors and Affiliations
Contributions
All authors contributed extensively to the work presented in this paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 4062 kb)
Rights and permissions
About this article
Cite this article
Shadbolt, P., Verde, M., Peruzzo, A. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photon 6, 45–49 (2012). https://doi.org/10.1038/nphoton.2011.283
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2011.283
This article is cited by
-
Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation
Nature Photonics (2023)
-
Applications of single photons to quantum communication and computing
Nature Reviews Physics (2023)
-
Integrated photonic platforms for quantum technology: a review
ISSS Journal of Micro and Smart Systems (2023)
-
Optical manipulation of quantum optic entanglement using graphene clad surface plasmonic polariton device
Quantum Information Processing (2023)
-
Integrated photonics in quantum technologies
La Rivista del Nuovo Cimento (2023)