Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM

Abstract

Near-edge X-ray absorption spectroscopy (NEXAFS)1 is an essential analytical tool in material science. Combining NEXAFS with scanning transmission X-ray microscopy (STXM) adds spatial resolution and the possibility to study individual nanostructures2,3. Here, we describe a full-field transmission X-ray microscope (TXM) that generates high-resolution, large-area NEXAFS data with a collection rate two orders of magnitude faster than is possible with STXM. The TXM optical design combines a spectral resolution of EE = 1 × 104 with a spatial resolution of 25 nm in a field of view of 15–20 µm and a data acquisition time of 1 s. As an example, we present image stacks and polarization-dependent NEXAFS spectra from individual anisotropic sodium and protonated titanate nanoribbons. Our NEXAFS-TXM technique has the advantage that one image stack visualizes a large number of nanostructures and therefore already contains statistical information. This new high-resolution NEXAFS-TXM technique opens the way to advanced nanoscale science studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow for NEXAFS-TXM measurements.
Figure 2: Selected nanoribbons for data analysis.
Figure 3: Titanium L-edges recorded on anatase and rutile reference powder samples.
Figure 4: Titanium L-edge spectra.

Similar content being viewed by others

References

  1. Ade, H. & Hitchcock, A. P. NEXAFS microscopy and resonant scattering: composition and orientation probed in real and reciprocal space. Polymer 49, 643–675 (2008).

    Article  Google Scholar 

  2. Najafi, E. et al. Polarization dependence of the C 1s X-ray absorption spectra of individual multi-walled carbon nanotubes. Small 4, 2279–2285 (2008).

    Article  Google Scholar 

  3. Felten, A. et al. Individual multiwall carbon nanotubes spectroscopy by scanning transmission X-ray microscopy. Nano Lett. 7, 2435–2440 (2007).

    Article  ADS  Google Scholar 

  4. Sasaki, T. et al. Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. J. Electron. Microsc. 59, S7–S13 (2010).

    Article  Google Scholar 

  5. Suenaga, K. & Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090 (2010).

    Article  ADS  Google Scholar 

  6. Krivanek, O. L. et al. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Phil. Trans. R. Soc. A 367, 3683–3697 (2009).

    Article  ADS  Google Scholar 

  7. Hitchcock, A. P., Dynes, J. J., Johansson, G., Wang, J. & Botton, G. Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. Micron 39, 311–319 (2008).

    Article  Google Scholar 

  8. Stohr, J., Padmore, H. A., Anders, S., Stammler, T. & Scheinfein, M. R. Principles of X-ray magnetic dichroism spectromicroscopy. Surf. Rev. Lett. 5, 1297–1308 (1998).

    Article  ADS  Google Scholar 

  9. Smith, A. P. & Ade, H. Quantitative orientational analysis of a polymeric material (Kevlar® fibers) with X-ray microspectroscopy. Appl. Phys. Lett. 69, 3833–3835 (1996).

    Article  ADS  Google Scholar 

  10. Locatelli, A. & Bauer, E. Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys. Condens. Matter 20, 093002 (2008).

    Article  ADS  Google Scholar 

  11. Jacobsen, C., Wirick, S., Flynn, G. & Zimba, C. Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution. J. Microsc. 197, 173–184 (2000).

    Article  Google Scholar 

  12. Krivanek, O. L. et al. Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935–945 (2010).

    Article  Google Scholar 

  13. Suenaga, K. et al. Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nature Chem. 1, 415–418 (2009).

    Article  ADS  Google Scholar 

  14. Schneider, G. Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy 75, 85–104 (1998).

    Article  Google Scholar 

  15. Schneider, G. et al. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nature Methods 7, 985–987 (2010).

    Article  Google Scholar 

  16. Umek, P., Korosec, R. C., Jancar, B., Dominko, R. & Arcon, D. The influence of the reaction temperature on the morphology of sodium titanate 1D nanostructures and their thermal stability. J. Nanosci. Nanotechnol. 7, 3502–3508 (2007).

    Article  Google Scholar 

  17. Kruger, P. Multichannel multiple scattering calculation of L2,3-edge spectra of TiO2 and SrTiO3: importance of multiplet coupling and band structure. Phys. Rev. B 81, 125121 (2010).

    Article  ADS  Google Scholar 

  18. Jamnik, J. et al. Stabilizers of particle size and morphology: a road towards high-rate performance insertion materials. Adv. Mater. 21, 2715–2719 (2009).

    Article  Google Scholar 

  19. Han, C. H. et al. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sens. Actuat. B 128, 320–325 (2007).

    Article  Google Scholar 

  20. Baiju, K. V. et al. Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania. Catal. Lett. 130, 130–136 (2009).

    Article  Google Scholar 

  21. Qu, J., Gao, X. P., Li, G. R., Jiang, Q. W. & Yan, T. Y. Structure transformation and photoelectrochemical properties of TiO2 nanomaterials calcined from titanate nanotubes. J. Phys. Chem. C 113, 3359–3363 (2009).

    Article  Google Scholar 

  22. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  ADS  Google Scholar 

  23. Brydson, R. et al. Electron energy-loss spectroscopy (EELS) and the electronic-structure of titanium-dioxide. Solid State Commun. 64, 609–612 (1987).

    Article  ADS  Google Scholar 

  24. Degroot, F. M. F., Fuggle, J. C., Thole, B. T. & Sawatzky, G. A. L2,3 X-ray-absorption edges of D0 compounds—K+, Ca2+, Sc3+ and Ti4+ in Oh (octahedral) symmetry. Phys. Rev. B 41, 928–937 (1990).

    Article  ADS  Google Scholar 

  25. Crocombette, J. P. & Jollet, F. Ti 2p X-ray-absorption in titanium dioxides (TiO2)—the influence of the cation site environment. J. Phys. Condens. Matter 6, 10811–10821 (1994).

    Article  ADS  Google Scholar 

  26. Andrusenko, I. et al. Structure analysis of titanate nanorods by automated electron diffraction tomography. Acta Crystallogr. B 67, 218–225 (2011).

    Article  Google Scholar 

  27. Umek, P. et al. Coordination of intercalated Cu2+ sites in copper doped sodium titanate nanotubes and nanoribbons. J. Phys. Chem. C 112, 15311–15319 (2008).

    Article  Google Scholar 

  28. Rehbein, S., Heim, S., Guttmann, P., Werner, S. & Schneider, G. Ultrahigh-resolution soft-X-ray microscopy with zone plates in high orders of diffraction. Phys. Rev. Lett. 103, 110801 (2009).

    Article  ADS  Google Scholar 

  29. Humar, M. et al. Mechanical properties of titania-derived nanoribbons. Nanotechnology 17, 3869–3872 (2006).

    Article  ADS  Google Scholar 

  30. Papa, A. L., Millot, N., Saviot, L., Chassagnon, R. & Heintz, O. Effect of reaction parameters on composition and morphology of titanate nanomaterials. J. Phys. Chem. C 113, 12682–12689 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Heim and R. Follath for their support during the development of the TXM and beamline. This work was funded in part by the Human Frontier Science Program (research grant RGP0053/2005-C), the German Federal Ministry of Education and Research (contract 05KS4BY1/7), the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, the Slovenian Research Agency (J2-9217), the COST Action MP0901, and the European Commission (contracts RII3-CT 2004-506008 (IASFS) and ERC 246791 (COUNTATOMS and ESMI)).

Author information

Authors and Affiliations

Authors

Contributions

P.G. contributed to the design and construction of the microscope and collected all NEXAFS data sets. C.B. prepared all of the specimens, helped collect the X-ray data and performed the analysis of the NEXAFS data. S.R. designed and constructed the zone plate objectives and assisted with microscope construction. P.U. synthesized the nanostructures and, together with X.K., performed TEM and SEM analysis, G.V.T. and C.P.E., together with C.B., analysed the NEXAFS and electron microscopy data. G.S. had the idea for the new TXM, directed the X-ray microscopy project and designed and built the microscope with his colleagues. All authors read and contributed to the Article.

Corresponding authors

Correspondence to Carla Bittencourt or Gerd Schneider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guttmann, P., Bittencourt, C., Rehbein, S. et al. Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM. Nature Photon 6, 25–29 (2012). https://doi.org/10.1038/nphoton.2011.268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing