Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of bright polariton solitons in a semiconductor microcavity

This article has been updated

Abstract

Microcavity polaritons are composite half-light half-matter quasiparticles, which have recently been demonstrated to exhibit rich physical properties, such as non-equilibrium condensation, parametric scattering and superfluidity. At the same time, polaritons have important advantages over photons for information processing, because their excitonic component leads to weaker diffraction and stronger interparticle interactions, implying, respectively, tighter localization and lower powers for nonlinear functionality. Here, we present the first experimental observations of bright polariton solitons in a strongly coupled semiconductor microcavity. The polariton solitons are shown to be micrometre-scale localized non-diffracting wave packets with a corresponding broad spectrum in momentum space. Unlike the solitons known in Bose condensed atomic gases, they are non-equilibrium and rely on a balance between losses and external pumping. Microcavity polariton solitons are excited on picosecond timescales, and thus have further benefits for information processing over light-only solitons in semiconductor cavity lasers, which have nanosecond response times.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configuration and observation of soliton propagation.
Figure 4: Numerical modelling.
Figure 2: Soliton stability.
Figure 3: Two-dimensional soliton images.
Figure 5: Soliton spectra.

Similar content being viewed by others

Change history

  • 16 November 2011

    The title of this Article originally published online was incorrect. This error has been corrected for all versions of the Article.

References

  1. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

    Article  ADS  Google Scholar 

  2. Kivshar, Y. & Agrawal, G. Optical Solitons: From Fibres to Photonic Crystals (Academic Press, 2001).

    Google Scholar 

  3. Skryabin, D. V. & Gorbach, A. V. Colloquium: looking at a soliton through the prism of optical supercontinuum. Rev. Mod. Phys. 82, 1287–1299 (2010).

    Article  ADS  Google Scholar 

  4. Aitchison, J. S. et al. Spatial optical solitons in planar glass waveguides. J. Opt. Soc. Am. B 8, 1290–1297 (1991).

    Article  ADS  Google Scholar 

  5. Askaryan, G. A. Effects of the gradient of a strong electromagnetic beam on electrons and atoms. Sov. Phys. JETP 15, 1088–1090 (1962).

    Google Scholar 

  6. Khaykovich, L. et al. Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002).

    Article  ADS  Google Scholar 

  7. Strecker, K. E., Partridge, G. B., Truscott, A. G. & Hulet, R. G. Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002).

    Article  ADS  Google Scholar 

  8. Eiermann, B. et al. Bright Bose–Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett. 92, 230401 (2004).

    Article  ADS  Google Scholar 

  9. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    Article  ADS  Google Scholar 

  10. Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities, Semiconductor Science and Technology (Oxford Univ. Press, 2007).

    Book  Google Scholar 

  11. Gibbs, H. M., Khitrova, G. & Koch, S. W. Exciton–polariton light–semiconductor coupling effects. Nature Photon. 5, 275–282 (2011).

    Article  ADS  Google Scholar 

  12. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature Phys. 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  13. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  14. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).

    Article  ADS  Google Scholar 

  15. Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton–polariton condensate. Science 326, 974–976 (2009).

    Article  ADS  Google Scholar 

  16. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  ADS  Google Scholar 

  17. Gippius, N. A., Tikhodeev, S. G., Kulakovskii, V. D., Krizhanovskii, D. N. & Tartakovskii, A. I. Nonlinear dynamics of polariton scattering in semiconductor microcavity: bistability vs stimulated scattering. Europhys. Lett. 67, 997–1003 (2004).

    Article  ADS  Google Scholar 

  18. Amo, A. et al. Exciton–polariton spin switches. Nature Photon. 4, 361–366 (2010).

    Article  ADS  Google Scholar 

  19. Sarkar, D. et al. Polarization bistability and resultant spin rings in semiconductor microcavities. Phys. Rev. Lett. 105, 216402 (2010).

    Article  ADS  Google Scholar 

  20. Paraiso, T. K., Wouters, M., Leger, Y., Morier-Genoud, F. & Deveaud-Pledran, B. Multi-stability of a coherent spin ensemble in a semiconductor microcavity. Nature Mater. 9, 655–660 (2010).

    Article  ADS  Google Scholar 

  21. Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).

    Article  ADS  Google Scholar 

  22. Akhmediev, N. & Ankiewicz-Kik, A. (eds) Dissipative Solitons (Springer, 2005).

    Book  Google Scholar 

  23. Ackemann, T., Firth, W. J. & Oppo, G.-L. in Advances in Atomic, Molecular and Optical Physics 57 (eds Arimondo, E., Berman, P. R. & Lin, C. C.) Ch. 6, 323–421 (Academic Press, 2009).

    Article  ADS  Google Scholar 

  24. Rosanov, N. N., Fedorov, S. V., Khadzi, P. I. & Belousov, I. V. Dissipative solitons of the Bose–Einstein condensate of excitons. JETP Lett. 85, 426–428 (2007).

    Article  ADS  Google Scholar 

  25. Egorov, O. A., Skryabin, D. V., Yulin, A. V. & Lederer, F. Bright cavity polariton solitons. Phys. Rev. Lett. 102, 153904 (2009).

    Article  ADS  Google Scholar 

  26. Egorov, O. A., Gorbach, A. V., Lederer, F. & Skryabin, D. V. Two-dimensional localization of exciton polaritons in microcavities. Phys. Rev. Lett. 105, 073903 (2010).

    Article  ADS  Google Scholar 

  27. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Article  ADS  Google Scholar 

  28. Saffman, M. & Skryabin, D. in Spatial Solitons (eds Trillo, S. & Torruellas, W.) (Springer, 2001).

    Google Scholar 

  29. Skryabin, D. V. Energy of the soliton internal modes and broken symmetries in nonlinear optics. J. Opt. Soc. Am. B 19, 529–536 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  30. Carusotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004).

    Article  ADS  Google Scholar 

  31. Krizhanovskii, D. N. et al. Self-organization of multiple polariton–polariton scattering in semiconductor microcavities. Phys. Rev. B 77, 115336 (2008).

    Article  ADS  Google Scholar 

  32. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–296 (2009).

    Article  ADS  Google Scholar 

  33. Krizhanovskii, D. N. et al. Rotation of the plane of polarization of light in a semiconductor microcavity. Phys. Rev. B 73, 073303 (2006).

    Article  ADS  Google Scholar 

  34. Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    Article  ADS  Google Scholar 

  35. Pedaci, F. et al. All-optical delay line using semiconductor cavity solitons. Appl. Phys. Lett. 92, 011101 (2008).

    Article  ADS  Google Scholar 

  36. Liew, T. C. H., Kavokin, A. V. & Shelykh, I. A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).

    Article  ADS  Google Scholar 

  37. Christmann, G. et al. Room temperature polariton lasing in a GaN–AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    Article  ADS  Google Scholar 

  38. Tsintzos, S. I. et al. Room temperature GaAs exciton–polariton light emitting diode. Appl. Phys. Lett. 94, 071109 (2009).

    Article  ADS  Google Scholar 

  39. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    Article  ADS  Google Scholar 

  40. Liew, T. C. H., Kavokin, A. V. & Shelykh, I. A. Excitation of vortices in semiconductor microcavities. Phys. Rev. B 75, 241301 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Sheffield group thanks EPSRC (EP/G001642, EP/H023259, EP/E051448), the FP7 ITN Clermont 4 and the Royal Society for support of this work, and A. Amo for a helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

All authors prepared the manuscript and analysed the experimental and numerical data. M.S. and D.N.K. conducted the experimental measurements. A.V.G., R.H. and D.V.S. conducted the theoretical and numerical work. D.V.S. proposed the concept. K.B. and R.H. fabricated the microcavity.

Corresponding authors

Correspondence to D. N. Krizhanovskii or D. V. Skryabin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sich, M., Krizhanovskii, D., Skolnick, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nature Photon 6, 50–55 (2012). https://doi.org/10.1038/nphoton.2011.267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing