Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular imaging true-colour spectroscopic optical coherence tomography


Molecular imaging holds a pivotal role in medicine due to its ability to provide invaluable insight into disease mechanisms at molecular and cellular levels. To this end, various techniques have been developed for molecular imaging, each with its own advantages and disadvantages1,2,3,4. For example, fluorescence imaging achieves micrometre-scale resolution, but has low penetration depths and is mostly limited to exogenous agents. Here, we demonstrate molecular imaging of endogenous and exogenous chromophores using a novel form of spectroscopic optical coherence tomography. Our approach consists of using a wide spectral bandwidth laser source centred in the visible spectrum, thereby allowing facile assessment of haemoglobin oxygen levels, providing contrast from readily available absorbers, and enabling true-colour representation of samples. This approach provides high spectral fidelity while imaging at the micrometre scale in three dimensions. Molecular imaging true-colour spectroscopic optical coherence tomography (METRiCS OCT) has significant implications for many biomedical applications including ophthalmology, early cancer detection, and understanding fundamental disease mechanisms such as hypoxia and angiogenesis.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Imaging system and processing for METRiCS OCT.
Figure 2: Tomographic (xz) images with endogenous contrast.
Figure 3: En face (xy) image using endogenous contrast, and spectral profiles.
Figure 4: Tomographic (xz) images with exogenous contrast.
Figure 5: En face (xy) image using exogenous contrast, and spectral profiles.


  1. Ntziachristos, V., Tung, C. H., Bremer, C. & Weissleder, R. Fluorescence molecular tomography resolves protease activity in vivo. Nature Med. 8, 757–761 (2002).

    Article  Google Scholar 

  2. Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnol. 21, 803–806 (2003).

    Article  Google Scholar 

  3. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932–940 (2005).

    Article  Google Scholar 

  4. Boppart, S. A., Oldenburg, A. L., Xu, C. & Marks, D. L. Optical probes and techniques for molecular contrast enhancement in coherence imaging. J. Biomed. Opt. 10, 041208 (2005).

    ADS  Article  Google Scholar 

  5. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    ADS  Article  Google Scholar 

  6. Morgner, U. et al. Spectroscopic optical coherence tomography. Opt. Lett. 25, 111–113 (2000).

    ADS  Article  Google Scholar 

  7. Yi, J., Gong, J. & Li, X. Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography. Opt. Express 17, 13157–13167 (2009).

    ADS  Article  Google Scholar 

  8. Cang, H. et al. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt. Lett. 30, 3048–3050 (2005).

    ADS  Article  Google Scholar 

  9. Oldenburg, A. L., Hansen, M. N., Ralston, T. S., Wei, A. & Boppart, S. A. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. J. Mater. Chem. 19, 6407–6411 (2009).

    Article  Google Scholar 

  10. Faber, D. J., Mik, E. G., Aalders, M. C. G. & van Leeuwen, T. G. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt. Lett. 30, 1015–1017 (2005).

    ADS  Article  Google Scholar 

  11. Faber, D. J. & van Leeuwen, T. G. Are quantitative attenuation measurements of blood by optical coherence tomography feasible? Opt. Lett. 34, 1435–1437 (2009).

    ADS  Article  Google Scholar 

  12. Yi, J. & Li, X. Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography. Opt. Lett. 35, 2094–2096 (2010).

    ADS  Article  Google Scholar 

  13. Graf, R. N. & Wax, A. Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography. J. Opt. Soc. Am. A 24, 2186–2195 (2007).

    ADS  Article  Google Scholar 

  14. Xu, C., Kamalabadi, F. & Boppart, S. A. Comparative performance analysis of time–frequency distributions for spectroscopic optical coherence tomography. Appl. Opt. 44, 1813–1822 (2005).

    ADS  Article  Google Scholar 

  15. Cohen, L. Time-frequency distributions—a review. Proc. IEEE 77, 941–981 (1989).

    ADS  Article  Google Scholar 

  16. Robles, F., Graf, R. N. & Wax, A. Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution. Opt. Express 17, 6799–6812 (2009).

    ADS  Article  Google Scholar 

  17. Grajciar, B., Pircher, M., Fercher, A. F. & Leitgeb, R. A. Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye. Opt. Express 13, 1131–1137 (2005).

    ADS  Article  Google Scholar 

  18. Graf, R. N., Brown, W. J. & Wax, A. Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source. Opt. Lett. 33, 1285–1287 (2009).

    ADS  Article  Google Scholar 

  19. Huang, Q. et al. Noninvasive visualization of tumors in rodent dorsal skin window chambers. Nature Biotechnol. 17, 1033–1035 (1999).

    Article  Google Scholar 

  20. Koehl, G. E., Gaumann, A. & Geissler, E. K. Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies. Clin. Exp. Metastasis 26, 329–344 (2009).

    Article  Google Scholar 

  21. Robles, F. E., Chowdhury, S. & Wax, A. Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics. Biomed. Opt. Express 1, 310–317 (2010).

    Article  Google Scholar 

  22. Skala, M. C., Fontanella, A., Lan, L., Izatt, J. A. & Dewhirst, M. W. Longitudinal optical imaging of tumor metabolism and hemodynamics. J. Biomed. Opt. 15, 011112 (2010).

    ADS  Article  Google Scholar 

Download references


This research was supported by a grant from the National Institutes of Health (NCI 1 R01 CA138594-01).

Author information

Authors and Affiliations



F.E.R. conducted the optical experiments and analysed the data. C.W. and G.G. procured the animal model and carried out animal protocols. F.E.R. and A.W. contributed to the genesis of the idea and wrote the paper.

Corresponding author

Correspondence to Adam Wax.

Ethics declarations

Competing interests

A.W. is the founder and chairman of Oncoscope, which licenses the rights to intellectual property underlying this work.

Supplementary information

Supplementary information

Supplementary information (PDF 558 kb)

Supplementary information

Supplementary Movie (MOV 8094 kb)

Supplementary information

Supplementary Movie (MOV 7968 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Robles, F., Wilson, C., Grant, G. et al. Molecular imaging true-colour spectroscopic optical coherence tomography. Nature Photon 5, 744–747 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing