Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Femtosecond to attosecond light pulses from a molecular modulator

Abstract

Ultrafast science has begun to tackle the measurement of electronic and chemical processes taking place on the few-femtosecond-to-attosecond timescale. This field requires high-power, extremely short-duration laser pulses. Here we review progress towards the generation of such pulses by Raman scattering in a medium whose component molecules oscillate in phase, which modulates the optical polarizability of the medium and generates high-order Raman sidebands on a field propagating through it. This process may occur with high efficiency and thus lead to sufficient bandwidth for supporting few-femtosecond to attosecond pulses. Significant progress has recently been made in the use of this technique to deliver useable ultrashort pulses in the visible to ultraviolet regions of the spectrum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the field synthesis experiments conducted by Chan et al.9
Figure 2: The process of cascaded Raman scattering.
Figure 3: Adiabatic preparation of a Raman modulator.
Figure 4: Impulsive preparation of a Raman modulator.

Similar content being viewed by others

References

  1. Zewail, A. Laser femtochemistry. Science 242, 1645–1653 (1988).

    ADS  Google Scholar 

  2. Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett 68, 2793–2795 (1996).

    ADS  Google Scholar 

  3. Brabec, T. & Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    ADS  Google Scholar 

  4. Krausz, F. & Ivanov, M. Attosecond Physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Google Scholar 

  5. Uiberacker, M. et al. Attosecond real-time observation of electron tunneling in atoms. Nature 446, 627–632 (2007).

    ADS  Google Scholar 

  6. Goulieimakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    ADS  Google Scholar 

  7. Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).

    ADS  Google Scholar 

  8. Woodbury, E. J. & Ng, W. K. Proc. Inst. Radio Eng. 50, 2367 (1962).

    Google Scholar 

  9. Chan, H.-S. et al. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics. Science 331, 1165–1168 (2011).

    ADS  Google Scholar 

  10. Garmire, E., Pandarese, F. & Townes, C. H. Coherently driven molecular vibrations and light modulation. Phys. Rev. Lett. 11, 160–163 (1963).

    ADS  Google Scholar 

  11. Yoshikawa, S. & Imasaka, T. A new approach for the generation of ultrashort optical pulses. Opt. Commun. 96, 94–98 (1993).

    ADS  Google Scholar 

  12. Harris, S. E. & Sokolov, A. V. Broadband spectral generation with refractive index control. Phys. Rev. A 55, R4019–R4022 (1997).

    ADS  Google Scholar 

  13. Belsley, M., Smithey, D. T., Wedding, K. & Raymer, M. G. Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering. Phys. Rev. A 48, 1514–1525 (1993).

    ADS  Google Scholar 

  14. Harris, S. E. & Sokolov, A. V. Subfemtosecond pulse generation by molecular modulation. Phys. Rev. Lett. 81, 2894–2897 (1998).

    ADS  Google Scholar 

  15. Zhavoronkov, N. & Korn, G. Generation of single intense short optical pulses by ultrafast molecular phase modulation. Phys. Rev. Lett. 88, 203901 (2002).

    ADS  Google Scholar 

  16. Kien, F. L. et al. Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering. Phys. Rev. A 60, 1562–1571 (1999).

    ADS  Google Scholar 

  17. Gundry, S. et al. Off-resonant preparation of a vibrational coherence for enhanced stimulated Raman scattering. Phys. Rev. A 72, 033824 (2005).

    ADS  Google Scholar 

  18. Huang, S. W., Chen, W.-J. & Kung, A. H. Vibrational molecular modulation in hydrogen. Phys. Rev. A 74, 063825 (2006).

    ADS  Google Scholar 

  19. Suzuki, T., Hirai, M. & Katsuragawa, M. Octave-spanning Raman comb with carrier envelope offset control. Phys. Rev. Lett. 101, 243602 (2008).

    ADS  Google Scholar 

  20. Hsieh, Z.-M. et al. Controlling the carrier-envelope phase of Raman-generated periodic waveforms. Phys. Rev. Lett. 102, 213902 (2009).

    ADS  Google Scholar 

  21. Belenov, E. M., Nazarkin, A. V. & Prokopovich, I. P. Dynamics of an intense femtosecond pulse in a Raman-active medium. Pisma ZhETF 55, 223–227 (1992).

    Google Scholar 

  22. Nazarkin, A., Korn, G., Wittman, M. & Elsaesser, T. Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium. Phys. Rev. Lett. 83, 2560–2563 (1999).

    ADS  Google Scholar 

  23. Kalosha, V. P. & Herrmann, J. Phase relations, quasicontinuous spectra and subfemtosecond pulses in high-order stimulated Raman scattering with short-pulse excitation. Phys. Rev. Lett. 85, 1226–1229 (2000).

    ADS  Google Scholar 

  24. Wang, J. K., Siegal, Y., Lü, C., Mazur, E. & Reintjes, J. Subpicosecond stimulated Raman scattering in high-pressure hydrogen. J. Opt. Soc. Am. B 11, 1031–1037 (1994).

    ADS  Google Scholar 

  25. Krylov, V. et al. Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges. J. Opt. Soc. Am. B 15, 2910–2916 (1998).

    ADS  Google Scholar 

  26. Nazarkin, A., Korn, G. & Elsaesser, T. All-linear control of attosecond pulse generation. Opt. Commun. 203, 403–412 (2002).

    ADS  Google Scholar 

  27. Kalosha, V. P. & Herrmann, J. Pulse compression without chirp control and frequency detuning by high-order coherent Raman scattering in impulsively excited media. Opt. Lett. 26, 456–458 (2001).

    ADS  Google Scholar 

  28. Kalosha, V. P. & Herrmann, J. Ultrabroadband and phase-amplitude modulation and compression of extremely short UV and VUV pulses by Raman-active modulators. Phys. Rev. A 67, 031801(R) (2003).

    ADS  Google Scholar 

  29. Kalosha, V., Spanner, M., Herrmann, J. & Ivanov, M. Generation of single dispersion precompensated 1 fs pulses by shaped-pulse optimized high order stimulated Raman scattering. Phys. Rev. Lett. 88, 103901 (2002).

    ADS  Google Scholar 

  30. Kawano, H., Suda, A. & Midorikawa, K. Control of spectral distribution of Raman sidebands in impulsively stimulated rotational Raman scattering. Appl. Phys. Lett. 80, 894–896 (2002).

    ADS  Google Scholar 

  31. Noack, F., Steinkellner, O., Tzankov, P., Ritze, H. H. & Herrmann, J. Generation of sub-30 fs ultraviolet pulses by Raman induced phase modulation in nitrogen. Opt. Express 13, 2467–2474 (2005).

    ADS  Google Scholar 

  32. Bustard, P. J., Sussman, B. J. & Walmsley, I. A. Amplification of impulsively excited molecular rotational coherence. Phys. Rev. Lett. 104, 193902 (2010).

    ADS  Google Scholar 

  33. Kawano, H., Hirakawa, Y. & Imasaka, T. Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis. Appl. Phys. B 65, 1–4 (1997).

    ADS  Google Scholar 

  34. Kawano, H., Hirakawa, Y. & Imasaka, T. Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime. IEEE J. Quant. Electron. 34, 260–268 (1998).

    ADS  Google Scholar 

  35. Sali, E., Mendham, K. J., Tisch, J. W. G., Halfmann, T. & Marangos, J. P. High-order stimulated Raman scattering in a highly transient regime driven by a pair of ultrashort pulses. Opt. Lett. 29, 495–497 (2004).

    ADS  Google Scholar 

  36. Turner, F. C., Trottier, A., Strickland, D. & Losev, L. L. Transient multi-frequency Raman generation in SF6 . Opt. Commun. 270, 419–423 (2007).

    ADS  Google Scholar 

  37. Sali, E. et al. Behavior of high-order stimulated Raman scattering in a highly transient regime. Phys. Rev. A 72, 013813 (2005).

    ADS  Google Scholar 

  38. Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009).

    Google Scholar 

  39. Sokolov, A. V., Walker, D. R., Yavuz, D. D., Yin, G. Y. & Harris, S. E. Raman generation by phased and antiphased molecular states. Phys. Rev. Lett. 85, 562–565 (2000).

    ADS  Google Scholar 

  40. Yavuz, D. D., Walker, D. R., Yin, G. Y. & Harris, S. E. Rotational Raman generation with near-unity conversion efficiency. Opt. Lett. 27, 769–771 (2002).

    ADS  Google Scholar 

  41. Chen, W.-J. et al. Sub-single-cycle optical pulse train with constant carrier envelope phase. Phys. Rev. Lett. 100, 163906 (2008).

    ADS  Google Scholar 

  42. Pandiri, K. R., Suzuki, T., Suda, A., Midorikawa, K. & Katsuragawa, M. Line-by-line control of 10-THz-frequency-spacing Raman sidebands. Opt. Express 18, 732–739 (2010).

    ADS  Google Scholar 

  43. Hseih, Z.-M. et al. Controlling the carrier envelope phase of Raman generated periodic waveforms. Phys. Rev. Lett. 102, 213902 (2009).

    ADS  Google Scholar 

  44. Kien, F. L., Shon, N. H. & Hakuta, K. Generation of subfemtosecond pulses by beating a femtosecond pulse with a Raman coherence adiabatically prepared in solid hydrogen. Phys. Rev. A 64, 051803(R) (2001).

    ADS  Google Scholar 

  45. Shon, N. H., Kien, F. L., Hakuta, K. & Sokolov, A. V. Two dimensional model for femtosecond pulse conversion and compression using high-order stimulated Raman scattering in solid hydrogen. Phys. Rev. A 65, 033809 (2002).

    ADS  Google Scholar 

  46. Kien, F. L., Hakuta, K. & Sokolov, A. V. Pulse compression by parametric beating with a prepared Raman coherence. Phys. Rev. A 66, 023813 (2002).

    ADS  Google Scholar 

  47. Liang, J. Q., Katsuragawa, M., Kien, F. L. & Hakuta, K. Sideband generation using strongly driven Raman coherence in solid hydrogen. Phys. Rev. Lett. 85, 2474–2477 (2000).

    ADS  Google Scholar 

  48. Gundry, S. et al. Ultrashort-pulse modulation in adiabatically prepared Raman media. Opt. Lett. 30, 180–182 (2005).

    ADS  Google Scholar 

  49. Burzo, A. M., Chugreev, A. V. & Sokolov, A. V. Optimized control of generation of few cycle pulses by molecular modulation. Opt. Commun. 262, 454–462 (2006).

    ADS  Google Scholar 

  50. Takahashi, E., Kato, S., Matsumoto, Y. & Losev L. L. Ultra broadband UV generation by stimulated Raman scattering of two-color KrF laser in deuterium confined in a hollow fiber. Opt. Express 15, 2535–2540 (2007).

    ADS  Google Scholar 

  51. Nazarkin, A., Korn, G., Wittman, M. & Elsaesser, T. Group-velocity-matched interactions in hollow waveguide: Enhanced high-order Raman scattering by impulsively excited molecular vibrations. Phys. Rev. A 65, 041802(R) (2002).

    ADS  Google Scholar 

  52. Sensarn, S., Goda, S. N., Yin, G. Y. & Harris, S. E. Molecular modulation in a hollow fiber. Opt. Lett. 31, 2836–2838 (2006).

    ADS  Google Scholar 

  53. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Google Scholar 

  54. Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. St. J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002).

    ADS  Google Scholar 

  55. Couny, F., Benabid, F. & Light, P. S. Large-pitch Kagome-structured hollow-core photonic crystal fiber. Opt. Lett. 31, 3574–3576 (2006).

    ADS  Google Scholar 

  56. Smith, C. M. et al. Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657–659 (2003).

    ADS  Google Scholar 

  57. Light, P. S. et al. Double photonic bandgap hollow-core photonic crystal fiber. Opt. Express 17, 16238 (2009).

    ADS  Google Scholar 

  58. Beaudou, B. et al. Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre. Opt. Express 18, 12381 (2010).

    ADS  Google Scholar 

  59. Benabid, F., Couny, F., Knight, J. C., Birks, T. A. & Russell, P. St. J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

    ADS  Google Scholar 

  60. Russell, P. Photonic Crystal Fibers. Science 299, 358–362 (2003).

    ADS  Google Scholar 

  61. Benabid, F., Bouwmans, G., Knight, J. C., Russell, P. St. J. & Couny, F. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. Phys. Rev. Lett. 93, 123903 (2004).

    ADS  Google Scholar 

  62. Benabid, F., Antonopoulos, G., Knight, J. C. & Russell, P. St. J. Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber. Phys. Rev. Lett. 95, 213903 (2005).

    ADS  Google Scholar 

  63. Couny, F., Carraz, O. & Benabid, F. Control of transient regime of stimulated Raman scattering using hollow-core PCF. J. Opt. Soc. B 26, 1209–1215 (2009).

    ADS  Google Scholar 

  64. Wang, Y. Y., Couny, F., Light, P. S., Mangan, B. J. & Benabid, F. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF. Opt. Lett. 35, 1127–1129 (2010).

    ADS  Google Scholar 

  65. Nazarkin, A., Abdolvand, A., Chugreev, A. V. & Russell, P. St. J. Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers. Phys. Rev. Lett. 105, 173902 (2010).

    ADS  Google Scholar 

  66. Pearce, G. J., Wiederhecker, G. S., Poulton, C. G., Burger, S. & Russell, P. St. J. Models for guidance in Kagome-structured hollow-core photonic crystal fibres. Opt. Express 15, 12680–12685 (2007).

    ADS  Google Scholar 

  67. Couny, F. & Benabid, F. Optical frequency comb generation in gas-filled hollow core photonic crystal fibres. J. Opt. A 11, 103002 (2009).

    ADS  Google Scholar 

  68. Couny, F., Benabid, F., Roberts, P. J., Light, P. S. & Raymer, M. G. Generation and photonic guidance of multi-octave optical-frequency combs. Science 318, 1118–1121 (2007).

    ADS  Google Scholar 

  69. Schenkel, B., Paschotta, R. & Keller, U. Pulse compression with supercontinuum generation in microstructure fibers. J. Opt. Soc. Am. B 22, 687–693 (2005).

    ADS  Google Scholar 

  70. Heckl, O. H. et al. High harmonic generation in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. B 97, 369–373 (2009).

    ADS  Google Scholar 

  71. Chugreev, A. V. et al. Manipulation of coherent Stokes light by transient stimulated Raman scattering in gas filled hollow-core PCF. Opt. Express 17, 8822–8829 (2009).

    ADS  Google Scholar 

  72. Wang, Y. Y., Wu, C., Couny, F., Raymer, M. G. & Benabid, F. Quantum-fluctuation-initiated coherence in multi-octave Raman optical frequency combs. Phys. Rev. Lett. 105, 123603 (2010).

    ADS  Google Scholar 

  73. Green, J. T., Weber, J. J. & Yavuz, D. D. Continuous-wave light modulation at molecular frequencies. Phys. Rev A 82, 011805(R) (2010).

    ADS  Google Scholar 

  74. Losev, L. L., Song, J., Xia, J. F., Strickland, D. & Brukhanov, V. V. Multifrequency parametric infrared Raman generation in KGd(WO4)2 crystal with biharmonic ultrashort-pulse pumping. Opt. Lett. 27, 2100–2102 (2002).

    ADS  Google Scholar 

  75. Zhi, M. & Sokolov, A. V. Broadband coherent light generation in a Raman-active crystal driven by two-color femtosecond laser pulses. Opt. Lett. 32, 2251–2253 (2007).

    ADS  Google Scholar 

  76. Matsuki, H., Inoue, K. & Hanamura, E. Multiple coherent anti-Stokes scattering due to phonon grating in KNbO3 induced by crossed beams of two-color femtosecond pulses. Phys. Rev. B 75, 024102 (2007).

    ADS  Google Scholar 

  77. Zhi, M., Wang, X. & Sokolov, A. V. Broadband coherent light generation in diamond driven by femtosecond pulses. Opt. Express 16, 12139 (2008).

    ADS  Google Scholar 

  78. Matsubara, E., Kawamoto, Y., Sekikawa, T. & Yamashita, M. Generation of ultrashort optical pulses in the 10fs regime using multicolour Raman sidebands in KTaO3 . Opt. Lett. 34, 1837–1839 (2009).

    ADS  Google Scholar 

  79. Matsubara, E., Sekikawa, T. & Yamashita, M. Generation of ultrashort optical pulses using multiple coherent anti-Stokes Raman scattering in a crystal at room temperature. Appl. Phys. Lett. 92, 071104 (2008).

    ADS  Google Scholar 

  80. Zhi, M. & Sokolov, A. V. Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses. New J. Phys 10, 025032 (2008).

    ADS  Google Scholar 

  81. Kawano, H., Ishikawa, K., Suda, A. & Midorikawa, K. Polarization of multiple rotational Raman sidebands from hydrogen gas by delayed four-wave Raman mixing in the femtosecond regime. Opt. Lett. 27, 1917–1919 (2002).

    ADS  Google Scholar 

  82. Kida, Y., Kagahara, T., Zaitsu, S., Matsuse, M. & Imasaka, T. Pulse compression based on coherent molecular motion induced by transient stimulated Raman scattering. Opt. Express 14, 3083–3092 (2006).

    ADS  Google Scholar 

  83. Kida, Y., Zaitsu, S. & Imasaka, T. Generation of intense 11-fs ultraviolet pulses using phase modulation by two types of coherent molecular motions. Opt. Express 16, 13492 (2008).

    ADS  Google Scholar 

  84. Witting, T. et al. Characterisation of high intensity sub 4 fs laser pulses using spatially encoded spectral shearing interferometry. Opt. Lett. 36, 1680–1682 (2011).

    ADS  Google Scholar 

  85. Durfee III, C. G., Backus, S., Kapteyn, H. C. & Murnane, M. M. Intense 8-fs pulse generation in the deep ultraviolet. Opt. Lett. 24, 697–699 (1999).

    ADS  Google Scholar 

  86. Baurn, P., Lochbrunner, S. & Riedle, E. Tunable sub-10fs ultraviolet pulses generated by achromatic frequency doubling. Opt. Lett. 29, 1686–1688 (2004).

    ADS  Google Scholar 

  87. Schriever, C., Lochbrunner, S., Krok, P. & Riedle, E. Tunable pulses from below 300 nm to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system. Opt. Lett. 33, 192–194 (2008).

    ADS  Google Scholar 

  88. Kosma, K., Trushin, S. A., Schmid, W. E. & Fuß, W. Vacuum ultraviolet pulses of 11fs from fifth-harmonic generation of a Ti:sapphire laser. Opt. Lett. 33, 723–725 (2008).

    ADS  Google Scholar 

  89. Satzger, H., Townsend, D., Zgierski, M. Z., Patchkovskii, S. et al. Primary processes underlying the photostability of isolated DNA bases: Adenine. Proc. Natl Acad. Sci. USA 103, 10196–10201 (2006).

    ADS  Google Scholar 

  90. Lochbrunner, S. et al. Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy. J. Chem. Phys. 114, 2519–2522 (2001).

    ADS  Google Scholar 

  91. Tian, P., Keusters, D., Suzaki, Y. & Warren, W. S. Femtosecond phase-coherent two-dimensional spectroscopy. Science 300, 1553–1555 (2003).

    ADS  Google Scholar 

  92. Irie, Y. & Imasaka, T. Generation of vibrational and rotational emissions by four-wave Raman mixing using an ultraviolet femtosecond pump beam. Opt. Lett. 20, 2072–2074 (1995).

    ADS  Google Scholar 

  93. Chen, W.-J. & Kung, A. H. Tunable deep-ultraviolet source generated by scattering off adiabatically prepared Raman coherence in hydrogen gas. Opt. Lett. 30, 2608–2610 (2005).

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Engineering and Physical Sciences Research Council grants EP/F034601/1, EP/E036112/1 and EP/E028063/1 and the EU FASTQUAST Initial Training Network (214962). We are indebted to the scientific insights of and fruitful discussions with P. Bustard, E. Sali, B. Sussman, F. Benabid, A. Sokolov, S. Harris and A. Kung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. G. Tisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, S., Walmsley, I., Tisch, J. et al. Femtosecond to attosecond light pulses from a molecular modulator. Nature Photon 5, 664–671 (2011). https://doi.org/10.1038/nphoton.2011.256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing