Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates


Single-crystalline GaN-based light-emitting diodes (s-LEDs) on crystalline sapphire wafers can provide point-like light sources with high conversion efficiency and long working lifetimes. Recently, s-LEDs on silicon wafers have been developed in efforts to overcome the size limitations of the sapphire substrate. However, to create larger, cheaper and efficient flat light sources, the fabrication of high-performance s-LEDs on amorphous glass substrates would be required, which remains a scientific challenge. Here, we report the fabrication of nearly single-crystalline GaN on amorphous glass substrates, in the form of pyramid arrays. This is achieved by high-temperature, predominant GaN growth on a site-confined nucleation layer with preferential polycrystalline morphology through local hetero-epitaxy. InGaN/GaN multiple-quantum wells formed on the GaN pyramid arrays exhibit a high internal quantum efficiency of 52%. LED arrays fabricated using these GaN pyramid arrays demonstrate reliable and stable area-type electroluminescent emission with a luminance of 600 cd m−2.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic for fabricating GaN pyramid arrays.
Figure 2: Effect of the presence of a titanium pre-orienting layer on crystallographic orientation of the LT-GaN nucleation layer.
Figure 3: Contour of GaN pyramid arrays formed on the template with hole-patterned SiO2/LT-GaN/titanium/glass.
Figure 4: Crystal quality of GaN pyramid arrays and electroluminescence devices fabricated on top of GaN pyramid arrays.


  1. Nakamura, S., Iwasa, N., Senoh, M. & Mukai, T. Hole compensation mechanism of p-type GaN films. Jpn J. Appl. Phys. 31, 1258–1266 (1992).

    Article  ADS  Google Scholar 

  2. Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

    Article  ADS  Google Scholar 

  3. Gardner, N. F. et al. Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2. Appl. Phys. Lett. 91, 243506 (2007).

    Article  ADS  Google Scholar 

  4. Wierer, J. J., David, A. & Megens, M. M. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nature Photon. 3, 163–169 (2009).

    Article  ADS  Google Scholar 

  5. Shchekin, O. B. et al. High performance thin-film flip-chip InGaN–GaN light-emitting diodes. Appl. Phys. Lett. 89, 071109 (2006).

    Article  ADS  Google Scholar 

  6. Narukawa, Y. et al. Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage, Jpn J. Appl. Phys. 46, L963–L965 (2007).

    Article  Google Scholar 

  7. Kim, J. H. & Holloway, P. H. Room-temperature photoluminescence and electroluminescence properties of sputter-grown gallium nitride doped with europium. J. Appl. Phys. 95, 4787–4790 (2004).

    Article  ADS  Google Scholar 

  8. Asahi, H. et al. Very strong photoluminescence emission from GaN grown on amorphous silica substrate by gas source MBE. J. Cryst. Growth 201/202, 371–375 (1999).

    Article  ADS  Google Scholar 

  9. Bour, D. P. et al. Polycrystalline nitride semiconductor light-emitting diodes fabricated on quartz substrates. Appl. Phys. Lett. 76, 2182–2184 (2000).

    Article  ADS  Google Scholar 

  10. Roussel, P. Markets and technology needs for UHB-LEDs. Proc. SPIE 6797, 679703 (2007).

    Article  Google Scholar 

  11. Wildeson, I. H. et al. III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy. J. Appl. Phys. 108, 044303 (2010).

    Article  ADS  Google Scholar 

  12. Lin, H. W., Lu, Y. J., Chen, H. Y., Lee, H. M. & Gwo, S. InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97, 073101 (2010).

    Article  ADS  Google Scholar 

  13. Chen, L. Y., Huang, Y. Y., Chang, C. S. & Huang, J. J. High output power density and low leakage current of InGaN/GaN nanorod light emitting diode with mechanical polishing process. International Conference on Compound Semiconductor Manufacturing Technology (2010), Portland, USA, 251–256 (CS Mantech, 2010).

  14. Kuykendall, T., Ulrich, P., Aloni, S. & Yang, P. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Mater. 6, 951–956 (2007).

    Article  ADS  Google Scholar 

  15. Lee, C. H. et al. GaN/In1−xGaxN/GaN/ZnO nanoarchitecture light emitting diode microarrays. Appl. Phys. Lett. 94, 213101 (2009).

    Article  ADS  Google Scholar 

  16. Consonni, V., Knelangen, M., Geelhaar, L., Trampert, A. & Riechert, H. Nucleation mechanisms of epitaxial GaN nanowires: origin of their self-induced formation and initial radius. Phys. Rev. B 81, 085310 (2010).

    Article  ADS  Google Scholar 

  17. Consonni, V. et al. Nucleation mechanisms of self-induced GaN nanowires grown on an amorphous interlayer. Phys. Rev. B 83, 035310 (2011).

    Article  ADS  Google Scholar 

  18. Kitamura, S., Hiramatsu, K. & Sawaki, N. Fabrication of GaN hexagonal pyramids on dot-patterned GaN/sapphire substrates via selective metalorganic vapor phase epitaxy. Jpn J. Appl. Phys. 34, L1184–L1186 (1995).

    Article  ADS  Google Scholar 

  19. Sekiguchi, H., Kishino, K. & Kikuchi, A. Ti-mask selective-area growth of GaN by rf-plasma-assisted molecular-beam epitaxy for fabricating regularly arranged InGaN/GaN nanocolumns. Appl. Phys. Exp. 1, 124002 (2008).

    Article  ADS  Google Scholar 

  20. Hersee, S. D., Sun, X. & Wang, X. The controlled growth of GaN nanowires. Nano Lett. 6, 1808–1811 (2006).

    Article  ADS  Google Scholar 

  21. Tal-Gutelmacher, E., Gemma, R., Pundt, A. & Kirchheim, R. Hydrogen behavior in nanocrystalline titanium thin films. Acta Materialia. 58, 3042–3049 (2010).

    Article  Google Scholar 

  22. Matysina, Z. A. The relative surface energy of hexagonal close-packed crystals. Mater. Chem. Phys. 60, 70–78 (1999).

    Article  Google Scholar 

  23. Da Silva, J. L. F., Stampfl, C. & Scheffler, M. Converged properties of clean metal surfaces by all-electron first-principles calculations. Surf. Sci. 600, 703–715 (2006).

    Article  ADS  Google Scholar 

  24. Nakamura, S. In situ monitoring of GaN growth using interference effects. Jpn J. Appl. Phys. 30, 1620–1627 (1991).

    Article  ADS  Google Scholar 

  25. Liu, C. et al. Variations in mechanisms of selective area growth of GaN on nanopatterned substrates by MOVPE. Phys. Status Solidi C 7, 32–35 (2010).

    Article  ADS  Google Scholar 

  26. Tanaka, S., Kawaguchi, Y., Sawaki, N., Hibino, M. & Hiramatsu, K. Defect structure in selective area growth GaN pyramid on (111) Si substrate. Appl. Phys. Lett. 76, 2701–2703 (2000).

    Article  ADS  Google Scholar 

  27. Chang, C. I., Lai, Y. L., Liu, C. P. & Wang, R. C. The influence of mask area ratio on GaN regrowth by epitaxial lateral overgrowth. J. Phys. Chem. Solids 69, 420–424 (2008).

    Article  ADS  Google Scholar 

  28. Guo, W., Zhang, M., Banerjee, A. & Bhattacharya, P. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett. 10, 3355–3359 (2010).

    Article  ADS  Google Scholar 

  29. Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984).

    Article  ADS  Google Scholar 

  30. Chichibu, S. F. et al. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors. Nature Mater. 5, 810–816 (2006).

    Article  ADS  Google Scholar 

  31. Miyake, H., Nakao, K. & Hiramatsu, K. Blue emission from InGaN/GaN hexagonal pyramid structures. Superlatt. Microstruct. 41, 341–346 (2007).

    Article  ADS  Google Scholar 

  32. Wächter, C. et al. High wavelength tunability of InGaN quantum wells grown on semipolar GaN pyramid facets. Phys. Status Solidi B 248, 605–610 (2011).

    Article  ADS  Google Scholar 

  33. Schubert, E. F. Light-Emitting Diodes (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  34. Wunderer, T. et al. Three-dimensional GaN for semipolar light emitters. Phys. Status Solidi B 248, 549–560 (2011).

    Article  ADS  Google Scholar 

  35. Sugiura, L. Dislocation motion in GaN light-emitting devices and its effect on device lifetime. J. Appl. Phys. 81, 1633–1638 (1997).

    Article  ADS  Google Scholar 

Download references


The authors thank K.Y. Park (Sysnex Inc.) and J.M. Zuo (University of Illinois, Urbana-Champaign) for fruitful discussions, H.Y. Ahn, E.H. Cho, K.H. Kim, H.K. Kim, J.W. Yoo, J.H. Lee, Y.K. Cha, Y.T. Ryu, J.S. Cho, K.W. Park, S.H. Song, M.J. Shin and S.M. Kim (Samsung Advanced Institute of Technology) and H.B. Yoo (Seoul National University) for technical support. J.M.K. thanks Y.J. Park and C.S. Sone (Samsung LED) for their valuable comments on the manuscript. M.K. acknowledges support from the National Research Foundation of Korea (NRF no. 2010-0017-609).

Author information

Authors and Affiliations



J.H.C. designed and carried out experiments, analysed the data and wrote the manuscript. A.Z. developed the device design and process flow. S.I.K. and C.W.B. optimized the pre-orienting and nucleation layers. M.H.Y. conduced TEM analysis. S.S.P. guided the experimental investigations. H.S. prepared submicrometre hole-patterned templates. U.J.K., H.B.S. and J.S.L. performed the optical measurements, including cathodoluminescence, photoluminescence and electroluminescence. M.K. and J.M.K. guided the theoretical investigations and edited the manuscript. K.K. designed the project. All authors commented on the manuscript.

Corresponding authors

Correspondence to Miyoung Kim or Jong Min Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1783 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, J., Zoulkarneev, A., Kim, S. et al. Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates. Nature Photon 5, 763–769 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing