Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced single-photon emission from a diamond–silver aperture

Abstract

Solid-state quantum emitters, such as the nitrogen-vacancy centre in diamond1, are robust systems for practical realizations of various quantum information processing protocols2,3,4,5 and nanoscale magnetometry schemes6,7 at room temperature. Such applications benefit from the high emission efficiency and flux of single photons, which can be achieved by engineering the electromagnetic environment of the emitter. One attractive approach is based on plasmonic resonators8,9,10,11,12,13, in which sub-wavelength confinement of optical fields can strongly modify the spontaneous emission of a suitably embedded dipole despite having only modest quality factors. Meanwhile, the scalability of solid-state quantum systems critically depends on the ability to control such emitter–cavity interaction in a number of devices arranged in parallel. Here, we demonstrate a method to enhance the radiative emission rate of single nitrogen-vacancy centres in ordered arrays of plasmonic apertures that promises greater scalability over the previously demonstrated bottom-up approaches for the realization of on-chip quantum networks.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Single-photon source based on diamond–plasmon apertures.
Figure 2: Fabrication and optical microscopy of devices.
Figure 3: Spontaneous emission enhancement of single NV centres.
Figure 4: Comparison of photoluminescence spectra and device performances.

References

  1. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    ADS  Article  Google Scholar 

  2. Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

    ADS  Article  Google Scholar 

  3. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    ADS  Article  Google Scholar 

  4. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    ADS  Article  Google Scholar 

  5. Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  6. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–648 (2008).

    ADS  Article  Google Scholar 

  7. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–652 (2008).

    ADS  Article  Google Scholar 

  8. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    ADS  Article  Google Scholar 

  9. Rigneault, H. et al. Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys. Rev. Lett. 95, 117401 (2005).

    ADS  Article  Google Scholar 

  10. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nautre 450, 402–406 (2007).

    Article  Google Scholar 

  11. Kolosev, R. et al. Wave–particle duality of single surface plasmon polaritons. Nature Phys. 5, 470–474 (2009).

    ADS  Article  Google Scholar 

  12. Maksymov, I. S. et al. Metal-coated nanocylinder cavity for broadband nonclassical light emission. Phys. Rev. Lett. 105, 180502 (2010).

    ADS  Article  Google Scholar 

  13. Bulu, I., Babinec, T., Hausmann, B., Choy, J. T. & Loncar, M. Plasmonic resonators for enhanced diamond NV- center single photon sources. Opt. Express 19, 5268–5276 (2011).

    ADS  Article  Google Scholar 

  14. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    ADS  Article  Google Scholar 

  15. Hadden, J. P. et al. Strongly enhanced photon collection from diamond defect centres under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97, 241901 (2010).

    ADS  Article  Google Scholar 

  16. Siyushev, P. et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 97, 241902 (2010).

    ADS  Article  Google Scholar 

  17. Schröder, T., Gädeke, F., Banholzer, M. J. & Benson, O. Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New J. Phys. 13, 055017 (2011).

    ADS  Article  Google Scholar 

  18. Beveratos, A., Brouri, R., Gacoin, T., Poizat, J.-P. & Grangier, P. Nonclassical radiation from diamond nanocrystals. Phys. Rev. A 64, 061802(R) (2001).

    ADS  Article  Google Scholar 

  19. Park, Y.-S., Cook, A. K. & Wang, H. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006).

    ADS  Article  Google Scholar 

  20. Larsson, M., Dinyari, K. N. & Wang, H. Composite optical microcavity of diamond nanopillar and silica microsphere. Nano Lett. 9, 1447–1450 (2009).

    ADS  Article  Google Scholar 

  21. Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

    ADS  Article  Google Scholar 

  22. Santori, C. et al. Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond. Nanotechnology 21, 274008 (2010).

    Article  Google Scholar 

  23. Sar, T. v. d. et al. Deterministic nano-assembly of a coupled quantum emitter–photonic crystal cavity system. Appl. Phys. Lett. 98, 193103 (2011).

    ADS  Article  Google Scholar 

  24. Barclay, P. E., Santori, C., Fu, K.-M., Beausoleil, R. G. & Painter, O. Coherent interference effects in a nano-assembled diamond NV center cavity-QED system. Opt. Express 17, 8081–8097 (2009).

    ADS  Article  Google Scholar 

  25. Schietinger, S., Barth, M., Aichele, T. & Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal/diamond hybrid structure at room temperature. Nano Lett. 9, 1694–1698 (2009).

    ADS  Article  Google Scholar 

  26. Schell, A. W. et al. Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt. Express 19, 7914–7920 (2011).

    ADS  Article  Google Scholar 

  27. Huck, A., Kumar, S., Shakoor, A. & Andersen, U. L. Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. Phys. Rev. Lett. 106, 096801 (2011).

    ADS  Article  Google Scholar 

  28. Chi, Y., Chen, G., Jelezko, F., Wu, E. & Zeng, H. Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film. IEEE Photon. Tech. Lett. 23, 374–376 (2011).

    ADS  Article  Google Scholar 

  29. Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

    ADS  Article  Google Scholar 

  30. Hausmann, B. M. et al. On-chip single crystal diamond resonators. CLEO/QELS 2011, Baltimore, MD, 5 May (2011).

  31. Hausmann, B. et al. Fabrication of diamond nanowires for quantum information processing applications. Diam. Relat. Mater. 19, 621–629 (2010).

    ADS  Article  Google Scholar 

  32. Hausmann, B. J. M. et al. Single color centers implanted in diamond nanostructures. New J. Phys. 13, 045004 (2011).

    ADS  Article  Google Scholar 

  33. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    ADS  Article  Google Scholar 

  34. Fuchs, G. D. et al. Excited-state spin coherence of a single nitrogen-vacancy centre in diamond. Nature Phys. 6, 668–672 (2010).

    ADS  Article  Google Scholar 

  35. Chew, H. Radiation and lifetimes of atoms inside dielectric particles. Phys. Rev. A 38, 3411–3416 (1988).

    ADS  Article  Google Scholar 

  36. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  37. de Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    ADS  Article  Google Scholar 

  38. Fu, K.-M. C. et al. Observation of the dynamic Jahn–Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 256404 (2009).

    ADS  Article  Google Scholar 

  39. Gonzalez-Tudela, A. et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Twitchen and M. Markham from Element Six for providing diamond samples, and C.L. Yu, P. Hemmer and O. Bakr for helpful discussions. The authors also thank K.P. Chen and V. Shalaev for their helpful suggestions. T.M.B. acknowledges support from the National Defense Science and Engineering Graduate (NDSEG) and National Science Foundation (NSF) Graduate Research fellowships, and J.T.C. acknowledges support from the NSF Graduate Research fellowship. Devices were fabricated in the Center for Nanoscale Systems (CNS) at Harvard. This work was supported in part by Harvard University's Nanoscale Science and Engineering Center (NSEC), a NSF Nanotechnology and Interdisciplinary Research Team grant (ECCS-0708905), the Defense Advanced Research Projects Agency (Quantum Entanglement Science and Technology program), and the King Abdullah University of Science and Technology Faculty Initiated Collaboration Award (FIC/2010/02).

Author information

Authors and Affiliations

Authors

Contributions

J.T.C., B.J.M.H. and T.M.B. performed the experiments and analysed the data. I.B. developed the theory and numerically modelled the structures. B.J.M.H. and J.T.C. fabricated the devices. M.K. contributed insights on the fabrication. P.M. and A.Y. provided additional experimental apparatus and helped with the measurements. M.L. and I.B. supervised the project. J.T.C., B.J.M.H. and M.L. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Marko Lončar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choy, J., Hausmann, B., Babinec, T. et al. Enhanced single-photon emission from a diamond–silver aperture. Nature Photon 5, 738–743 (2011). https://doi.org/10.1038/nphoton.2011.249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.249

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing