Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures

Abstract

The detection of a few molecules in a highly diluted solution is of paramount interest in fields including biomedicine, safety and eco-pollution in relation to rare and dangerous chemicals. Nanosensors based on plasmonics are promising devices in this regard, in that they combine the features of high sensitivity, label-free detection and miniaturization. However, plasmonic-based nanosensors, in common with general sensors with sensitive areas on the scale of nanometres, cannot be used directly to detect molecules dissolved in femto- or attomolar solutions. In other words, they are diffusion-limited and their detection times become impractical at such concentrations. In this Article, we demonstrate, by combining super-hydrophobic artificial surfaces and nanoplasmonic structures, that few molecules can be localized and detected even at attomolar (10−18 mol l−1) concentration. Moreover, the detection can be combined with fluorescence and Raman spectroscopy, such that the chemical signature of the molecules can be clearly determined.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: High contact angle and evaporation process.
Figure 2: Architecture of the four different devices fabricated in this work.
Figure 3: Localization and spectroscopic measurements.
Figure 4: Single lambda-DNA localization and detection from a 10 aM solution.
Figure 5: Super-hydrophobic nanostructure.
Figure 6: Super-hydrophobic device with embedded plasmonic nanostructure.

References

  1. 1

    Michaels, A. M., Nirmal, M. & Brus, L. E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939 (1999).

    Article  Google Scholar 

  2. 2

    Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    ADS  Article  Google Scholar 

  3. 3

    De Angelis F. et al. A hybrid plasmonic–photonic nanodevice for label-free detection of a few molecules. Nano Lett. 8, 2321–2327 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Sheehan, P. E. & Whitman, L. J. Detection limits for nanoscale biosensors. Nano Lett. 4, 803–807 (2005).

    ADS  Article  Google Scholar 

  6. 6

    Nair, P. R. & Alam, M. A. Performance limits of nanobiosensors. Appl. Phys. Lett. 88, 233120 (2006).

    ADS  Article  Google Scholar 

  7. 7

    Lassiter, J. B. et al. Close encounters between two nanoshells. Nano Lett. 8, 1212–1218 (2008).

    ADS  Article  Google Scholar 

  8. 8

    Fatemeh, E . et al. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal. Chem. 81, 4308–4311 (2009).

    Article  Google Scholar 

  9. 9

    Luo, M. S. C. et al. Artificial lotus leaf by nanocasting. Langmuir 21, 8978–8981 (2005).

    Article  Google Scholar 

  10. 10

    Reyssat, M., Pépin, A., Marty, F., Chen, Y. & Quéré, D. Bouncing transitions on microtextured materials. Europhys. Lett. 74, 306–319 (2006).

    ADS  Article  Google Scholar 

  11. 11

    Accardo, A. et al. In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces. Langmuir 26, 15057–15064 (2010).

    Article  Google Scholar 

  12. 12

    McHale, G., Shirtcliffe, N. J. & Newton, M. I. Super-hydrophobic and super-wetting surfaces: analytical potential? Analyst 129, 184–187 (2004).

    Article  Google Scholar 

  13. 13

    Mahadevan, L. & Pomeau, Y. Rolling droplets. Phys. Fluids 11, 2449–2454 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    Aussillous, P. & Quéré, D. Liquid marbles. Nature 411, 924–927 (2001).

    ADS  Article  Google Scholar 

  15. 15

    McHale, G., Aqil, S., Shirtcliffe, N. J., Newton, M. I. & Erbil, H. Y. Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 21, 11053–11060 (2005).

    Article  Google Scholar 

  16. 16

    Grand, J. et al. Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays. Phys. Rev. B, 72, 033407 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    ADS  Article  Google Scholar 

  18. 18

    Chen, X. W., Sandoghdar, V. & Agio, M. Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett. 9, 3756–3761 (2009).

    ADS  Article  Google Scholar 

  19. 19

    Lindquist, N. C., Nagpal, P., Lesuffleur, A., Norris, D. J. & Oh, S. H. Three dimensional plasmonic nanofocusing. Nano Lett. 10, 1369–1373 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    ADS  Article  Google Scholar 

  21. 21

    Bargioni, A. W. et al. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes. Nano Lett. 11, 1201–1207 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Genov, D. A., Sarychev, A. K., Shalaev, V. M. & Wei, A. Resonant field enhancement from metal nanoparticle arrays. Nano Lett. 4, 153–158 (2004).

    ADS  Article  Google Scholar 

  23. 23

    Neacsu, C. C. et al. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett. 10, 592–596 (2010).

    ADS  Article  Google Scholar 

  24. 24

    De Angelis, F., Liberale, C., Coluccio, M. L., Cojoc, G. & Di Fabrizio, E. Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. Nanoscale 3, 2689–2696 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    ADS  Article  Google Scholar 

  26. 26

    Niemeyer, C. M. Semisynthetic DNA–protein conjugates for biosensing and nanofabrication. Angew. Chem. Int. Ed. 49, 1200–1216 (2010).

    Article  Google Scholar 

  27. 27

    Seeman, N. C. Feature DNA in a material world. Nature 421, 427–431 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  28. 28

    Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    ADS  Article  Google Scholar 

  29. 29

    Schroeder, H., Ellinger, B., Becker, C. F., Waldmann, H. & Niemeyer, C. M. Generation of live-cell microarrays by means of DNA-directed immobilization of specific cell surface ligands. Angew. Chem. Int. Ed. 46, 4180–4183 (2007).

    Article  Google Scholar 

  30. 30

    Park, N., Um, S. H., Funabashi, H., Xu, J. & Luo, D. A cell-free protein producing gel. Nature Mater. 8, 432–437 (2009).

    ADS  Article  Google Scholar 

  31. 31

    Sherman, W. B. et al. A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004).

    ADS  Article  Google Scholar 

  32. 32

    De Angelis, F. et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nature Nanotech. 5, 67–72 (2010).

    ADS  Article  Google Scholar 

  33. 33

    Fang, Y., Seong, N. H. & Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388–392 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Rodrìguez-Lorenzo L. et al. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 131, 4616–4618 (2009).

    Article  Google Scholar 

  35. 35

    Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Article  Google Scholar 

  36. 36

    Das, G. et al. Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens. Bioelectron. 24, 1693–1699 (2009).

    Article  Google Scholar 

  37. 37

    Kendrew, J. C. et al. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662–666 (1958).

    ADS  Article  Google Scholar 

  38. 38

    Revenis, M. E. & Kaliner, M. A. Lactoferrin and lysozyme deficiency in airway secretions: association with the development of bronchopulmonary dysplasia. J. Pediatr. 121, 262–270 (1992).

    Article  Google Scholar 

  39. 39

    Lundberg, D., Carnerup, A. M., Schillén, K., Miguel Mda, G. & Lindman B. Phase behavior and coassembly of DNA and lysozyme in dilute aqueous mixtures: a model investigation of DNA–protein interactions. Langmuir 26, 2986–2988 (2010).

    Article  Google Scholar 

  40. 40

    Lönnerdal, B. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 77, 1537–1543 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Fruk (Karlsruhe Institute of Technology) for discussions and suggestions on biological aspects of this work, and R. La Rocca, R. Tallerico and A. Nicastri (BIONEM University of Magna Graecia) for sample preparation. This work was funded under European Project SMD FP7-NMP 2800-SMALL-2 (proposal no. CP-FP 229375-2), Project NANOANTENNA FP7-HEALTH-2009 (grant agreement no. 241818), Italian project FIRB ‘Rete Nazionale di Ricerca sulle Nanoscienze ItalNanoNet’ (cod. RBPR05JH2P_010).

Author information

Affiliations

Authors

Contributions

F.D.A. conducted FIB milling, electron-beam deposition and numerical simulations. F.G. carried out micropillar fabrication, super-hydrophobic measurements and modelling. F.M. prepared samples and carried out evaporation and sputtering. G.D. and P.C. conducted Raman measurements. M.M. carried out DNA deposition and protocol optimization. M.L.C. carried out electroless deposition and protocol optimization. G.C., A.A., L.T. and A.T. were involved in super-hydrophobic characterization. C.L. carried out fluorescence measurements. R.P.Z. conducted electromagnetic modeling. G.P. was responsible for superhydrophobic and microfluidic design. G.C. carried out the biological overview and protein evaluation. R.C. was responsible for project planning. E.D.F. was proposer and project coordinator.

Corresponding author

Correspondence to E. Di Fabrizio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1471 kb)

Supplementary information

Supplementary Movie 1 (WMV 610 kb)

Supplementary information

Supplementary Movie 2 (WMV 757 kb)

Supplementary information

Supplementary Movie 3 (WMV 450 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Angelis, F., Gentile, F., Mecarini, F. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nature Photon 5, 682–687 (2011). https://doi.org/10.1038/nphoton.2011.222

Download citation

Further reading

Search

Quick links