Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Frequency stabilization to 6 × 10−16 via spectral-hole burning

Abstract

We demonstrate two-stage laser stabilization based on a combination of Fabry–Pérot and spectral-hole burning techniques. The laser is first pre-stabilized by the Fabry–Pérot cavity to a fractional-frequency stability of σy(τ) < 1 × 10−13. A pattern of multiple spectral holes written in the absorption spectrum of Eu3+:Y2SiO5 serves to further stabilize the laser to σy(τ) ≤ 6 × 10−16 for 2 s ≤ τ ≤ 8 s. We also measure the frequency sensitivity of Eu3+:Y2SiO5 spectral holes to environmental perturbations including temperature (16 kHz K−2), pressure (211.4 Hz Pa−1) and acceleration (7 × 10−12 g−1). Each spectral hole sensitivity parameter is lower than the corresponding parameter for Fabry–Pérot cavities, suggesting that spectral holes can be more frequency-stable.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The Eu3+:Y2SiO5 spectroscopy and laser stabilization experimental set-up.
Figure 2: Eu3+:Y2SiO5 absorption spectrum and crystal housing.
Figure 3: Pressure and temperature sensitivity of the spectral-hole frequency for spectral sites 1 and 2.
Figure 4: Laser stabilization to multiple spectral holes.

References

  1. 1

    Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 28, 1808–1812 (2008).

    ADS  Article  Google Scholar 

  2. 2

    Blatt, S. et al. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. Phys. Rev. Lett. 100, 140801 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Bartels, A. et al. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Opt. Lett. 30, 667–669 (2005).

    ADS  Article  Google Scholar 

  5. 5

    Zhang, W. et al. Sub-100 attoseconds stability optics-to-microwave synchronization. Appl. Phys. Lett. 96, 211105 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nature Photon. 5, 425–429 (2011).

    ADS  Article  Google Scholar 

  7. 7

    Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

    ADS  Article  Google Scholar 

  8. 8

    Young, B. C., Cruz, F. C., Itano, W. M. & Bergquist, J. C. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999).

    ADS  Article  Google Scholar 

  9. 9

    Jiang, Y. Y. et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nature Photon. 5, 158–161 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Notcutt, M., Ma, L. S., Ye, J. & Hall, J. L. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt. Lett. 30, 1815–1817 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Nazarova, T., Riehle, F. & Sterr, U. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser. Appl. Phys. B 83, 531–536 (2006).

    ADS  Article  Google Scholar 

  12. 12

    Webster, S. A., Oxborrow, M. & Gill, P. Vibration insensitive optical cavity. Phys. Rev. A 75, 011801 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Millo, J. et al. Ultrastable lasers based on vibration insensitive cavities. Phys. Rev. A 79, 053829 (2009).

    ADS  Article  Google Scholar 

  14. 14

    Thorpe, M. J., Leibrandt, D. R., Fortier, T. M. & Rosenband, T. Measurement and real-time cancellation of vibration-induced phase noise in a cavity-stabilized laser. Opt. Express. 18, 18744–18751 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Numata, K., Kemery, A. & Camp, J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004).

    ADS  Article  Google Scholar 

  16. 16

    Notcutt, M. et al. Contribution of thermal noise to frequency stability of rigid optical cavity via hertz-linewidth lasers. Phys. Rev. A 73, 031804 (2006).

    ADS  Article  Google Scholar 

  17. 17

    Sellin, P. B., Strickland, N. M., Carlsten, J. L. & Cone, R. L. Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning. Opt. Lett. 24, 1038–1040 (1999).

    ADS  Article  Google Scholar 

  18. 18

    Strickland, N. M., Sellin, P. B., Sun, Y., Carlsten, J. L. & Cone, R. L. Laser frequency stabilization using regenerative spectral hole burning. Phys. Rev. B 62, 1473–1476 (2000).

    ADS  Article  Google Scholar 

  19. 19

    Böttger, T., Pryde, G. J. & Cone, R. L. Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning. Opt. Lett. 28, 200–202 (2003).

    ADS  Article  Google Scholar 

  20. 20

    Julsgaard, B., Walther, A., Kröll, S. & Rippe, L. Understanding laser stabilization using spectral hole burning. Opt. Express 15, 11444–11465 (2007).

    ADS  Article  Google Scholar 

  21. 21

    Shelby, R. M. & Macfarlane, R. M. Measurement of the anomalous nuclear magnetic moment of trivalent europium. Phys. Rev. Lett. 47, 1172–1175 (1981).

    ADS  Article  Google Scholar 

  22. 22

    Yano, R., Mitsunaga, M. & Uesugi, N. Ultralong optical dephasing time in Eu3+:Y2SiO5 . Opt. Lett. 16, 1884–1886 (1991).

    ADS  Article  Google Scholar 

  23. 23

    Equall, R. W., Sun, Y., Cone, R. L. & Macfarlane, R. M. Ultraslow optical dephasing in Eu3+:Y2SiO5 . Phys. Rev. Lett. 72, 2179–2182 (1994).

    ADS  Article  Google Scholar 

  24. 24

    Stoneham, A. M. Shapes of inhomogeneously broadened resonance lines in solids. Rev. Mod. Phys. 41, 82–108 (1994).

    ADS  Article  Google Scholar 

  25. 25

    Könz, F. et al. Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5 . Phys. Rev. B 68, 085109 (2003).

    ADS  Article  Google Scholar 

  26. 26

    Sellars, M. J., Fraval, E. & Longdell, J. J. Investigation of static electric dipole-dipole coupling induced optical inhomogeneous broadening in Eu3+:Y2SiO5 . J. Lumin. 107, 150–154 (2004).

    Article  Google Scholar 

  27. 27

    ULE® Corning Code 7972 Ultra Low Expansion Glass, available at http://www.corning.com/docs/specialtymaterials/pisheets/ulebro91106.pdf.

  28. 28

    Bergquist, J. C., Itano, W. M. & Wineland, D. J. in International School of Physics ‘Enrico Fermi’ (eds Hänsch, T. W. & Inguscio, M) (North-Holland, 1994).

    Google Scholar 

  29. 29

    Leibrandt, D. R. et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. Opt. Express 19, 3471–3482 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Dick, G. J. Local oscillator induced instabilities in trapped ion frequency standards. Proceedings of the Precise Time and Time Interval Meeting 133–147 (1987).

  32. 32

    Peik, E. & Tamm, Chr. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181–186 (2003).

    ADS  Article  Google Scholar 

  33. 33

    Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).

    ADS  Article  Google Scholar 

  34. 34

    Heinert, D. et al. Potential mechanical loss mechanisms in bulk materials for future gravitational wave detectors. J. Phys. Conf. Ser. 228, 012032 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

M.J.T. acknowledges support from the National Research Council. The authors thank R.L. Cone, J.C. Bergquist, J. Ye, J.L. Hall and D.J. Wineland for useful discussions, and D.R. Leibrandt and J.A. Sherman for help with manuscript preparation. This work is supported by the Defence Advanced Research Projects Agency and the Office of Naval Research and is not subject to US copyright.

Author information

Affiliations

Authors

Contributions

M.J.T., T.R. and L.R. designed the experiments. M.J.T., T.M.F. and M.S.K. performed the experiments. M.J.T. and T.R. conducted the data analysis. M.J.T., T.R., L.R. and M.S.K. wrote the manuscript.

Corresponding author

Correspondence to Michael J. Thorpe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thorpe, M., Rippe, L., Fortier, T. et al. Frequency stabilization to 6 × 10−16 via spectral-hole burning. Nature Photon 5, 688–693 (2011). https://doi.org/10.1038/nphoton.2011.215

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing