Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

Abstract

The control of one light field by another, ultimately at the single photon level1,2,3,4,5,6,7, is a challenging task that has numerous interesting applications within nonlinear optics4,5 and quantum information science6,7,8. This type of control can only be achieved through highly nonlinear interactions, such as those based on electromagnetic induced transparency (EIT)2,3,4,5,6,9,10,11,12. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Changes from essentially full transmission to full absorption of a single photon probe field are achieved within unprecedentedly narrow EIT windows of a few tens of kilohertz. By applying a weak switching field, this allows us to demonstrate nearly perfect switching of the transmission of the probe field. The results represent important milestones for future realizations of quantum information processing devices, such as high-efficiency quantum memories8,13,14, single-photon transistors15,16 and single-photon gates4,6,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical setup and level schemes.
Figure 2: Cavity EIT.
Figure 3: All-optical switching.

Similar content being viewed by others

References

  1. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997).

    Article  Google Scholar 

  2. Imamoglu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997).

    Article  ADS  Google Scholar 

  3. Grangier, P., Walls, D. F. & Gheri, K. M. Comment on ‘Strongly interacting photons in a nonlinear cavity’. Phys. Rev. Lett. 81, 2833 (1998).

    Article  ADS  Google Scholar 

  4. Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999).

    Article  ADS  Google Scholar 

  5. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  6. Lukin, M. D. & Imamoglu, A. Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001).

    Article  ADS  Google Scholar 

  7. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  8. Lvovksy, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nature Photon. 3, 706–714 (2009).

    Article  ADS  Google Scholar 

  9. Ottaviani, C., Vitali, D., Artoni, M., Cataliotti, F. & Tombesi, P. Polarization qubit phase gate in driven atomic media. Phys. Rev. Lett. 90, 197902 (2003).

    Article  ADS  Google Scholar 

  10. Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    Article  ADS  Google Scholar 

  11. Kang, H. & Zhu, Y. Observation of large Kerr nonlinearity at low light intensities. Phys. Rev. Lett. 91, 093601 (2003).

    Article  ADS  Google Scholar 

  12. Braje, D. A., Balic, V., Yin, G. Y. & Harris, S. E. Low-light-level nonlinear optics with slow light. Phys. Rev. A 68, 041801(R) (2003).

    Article  ADS  Google Scholar 

  13. Lukin, M. D., Yelin, S. F. & Fleischhauer, M. Entanglement of atomic ensembles by trapping correlated photon states. Phys. Rev. Lett. 84, 4232–4235 (2000).

    Article  ADS  Google Scholar 

  14. Dantan, A. & Pinard, M. Quantum-state transfer between fields and atoms in electromagnetically induced transparency. Phys. Rev. A 69, 043810 (2004).

    Article  ADS  Google Scholar 

  15. Birnbaum, K. M., et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  16. Hwang, J. et al. A single molecule optical transistor. Nature 460, 76–80 (2009).

    Article  ADS  Google Scholar 

  17. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  18. Kash, M. M. et al. Ultraslow group velocity and enhanced nonlinear effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999).

    Article  ADS  Google Scholar 

  19. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  20. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    Article  ADS  Google Scholar 

  21. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005).

    Article  ADS  Google Scholar 

  22. Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006).

    Article  ADS  Google Scholar 

  23. Mücke, M. et al. Electromagnetically induced transparency with single atoms in cavity. Nature 465, 755–758 (2010).

    Article  ADS  Google Scholar 

  24. Kampschulte, T. et al. Optical control of the refractive index of a single atom. Phys. Rev. Lett. 105, 153603 (2010).

    Article  ADS  Google Scholar 

  25. Hernandez, G., Zhang, J. & Zhu, Y. Vacuum Rabi splitting and intracavity dark state in a cavity–atom system. Phys. Rev. A 76, 053814 (2007).

    Article  ADS  Google Scholar 

  26. Wu, H., Gea-Banacloche, J. & Xiao, M. Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium. Phys. Rev. Lett. 100, 173602 (2008).

    Article  ADS  Google Scholar 

  27. Slodicka, L., Hétet, G., Gerber, S., Hennrich, M. & Blatt, R. Electromagnetically induced transparency from a single atom in free space. Phys. Rev. Lett. 105, 153604 (2010).

    Article  ADS  Google Scholar 

  28. Herskind, P. F., Dantan, A., Marler, J. P., Albert, M. & Drewsen, M. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity. Nature Phys. 5, 494–498 (2009).

    Article  ADS  Google Scholar 

  29. Dantan, A., Albert, M., Marler, J. P., Herskind, P. F. & Drewsen, M. Large ion Coulomb crystals: a near-ideal medium for coupling optical cavity modes to matter. Phys. Rev. A 80, 041802(R) (2009).

    Article  ADS  Google Scholar 

  30. Dantan, A., Marler, J. P., Albert, M., Guénot, D. & Drewsen, M. Noninvasive vibrational mode spectroscopy of ion Coulomb crystals through resonant collective coupling to an optical cavity field. Phys. Rev. Lett. 105, 103001 (2010).

    Article  ADS  Google Scholar 

  31. Zimmer, F. E., André, A., Lukin, M. D. & Fleischhauer, M. Coherent control of stationary light pulses. Opt. Commun. 264, 441–453 (2006).

    Article  ADS  Google Scholar 

  32. Lin, Y-W. et al. Stationary light pulses in cold atomic media and without Bragg gratings. Phys. Rev. Lett. 102, 213601 (2009).

    Article  ADS  Google Scholar 

  33. Wu, J-H., Artoni, M. & La Rocca, G. C. Stationary light pulses in cold thermal atomic clouds. Phys. Rev. A 82, 013807 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Marler for her help at an early stage of these experiments and acknowledge financial support from the Carlsberg Foundation, the Danish Natural Science Research Council through the European Science Foundation EuroQUAM ‘Cavity Mediated Molecular Cooling’ project and the STREP project ‘Physics of Ion Coulomb Crystals’ under the European Commission FP7 programme.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was conceived by A.D. and M.D. and carried out by M.A. and A.D. The theoretical modelling and data analysis were accomplished by M.A. and A.D. A.D. and M.D. wrote the manuscript with contributions from M.A.

Corresponding author

Correspondence to Michael Drewsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 333 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, M., Dantan, A. & Drewsen, M. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals. Nature Photon 5, 633–636 (2011). https://doi.org/10.1038/nphoton.2011.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing