All-optical control of the quantum flow of a polariton condensate

Abstract

Although photons in vacuum are massless particles that do not appreciably interact with each other, significant interactions appear in suitable nonlinear media, leading to hydrodynamic behaviours typical of quantum fluids1,2,3,4,5,6. Here, we show the generation and manipulation of vortex–antivortex pairs in a coherent gas of strongly dressed photons (polaritons) flowing against an artificial potential barrier created and controlled by a light beam in a semiconductor microcavity. The optical control of the polariton flow allows us to reveal new quantum hydrodynamical phenomenologies such as the formation of vortex pairs upstream from the optical barrier, a case of ultrashort time excitation of the quantum flow, and the generation of vortices with counterflow trajectories. Additionally, we demonstrate how to permanently trap and store quantum vortices hydrodynamically generated in the wake of a defect. These observations are supported by time-dependent simulations based on the non-equilibrium Gross–Pitaevskii equation7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the experiment.
Figure 2: Effect of the optical barrier on the nucleation of vortex–antivortex pairs.
Figure 3: Time-integrated real space emission patterns and corresponding vortex trajectories (obtained from successive time shots) for different parameters of the c.w. laser, injection density and barrier shape.
Figure 4: Vortex–antivortex pair storage in a triangular trap.

References

  1. 1

    Carusotto, I. & Ciuti, C. Swimming in a sea of superfluid light. Europhys. News 41, 23–27 (2010).

  2. 2

    Coullet, P., Gil, L. & Rocca, F. Optical vortices. Opt. Commun. 73, 403–408 (1989).

  3. 3

    Staliunas, K. & Sanchez-Morcillo, V. J. Transverse Patterns in Nonlinear Optical Resonators (Springer-Verlag, 2003).

  4. 4

    Wan, W., Jia, S. & Fleischer, J. W. Dispersive superfluid-like shock waves in nonlinear optics. Nature Phys. 3, 46–51 (2007).

  5. 5

    Bolda, E. L., Chiao, R. Y. & Zurek, W. H. Dissipative optical flow in a nonlinear Fabry–Perot cavity. Phys. Rev. Lett. 86, 416–419 (2001).

  6. 6

    Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nature Phys. 7, 635–641 (2011).

  7. 7

    Pigeon, S., Carusotto, I. & Ciuti, C. Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid. Phys. Rev. B 83, 144513 (2011).

  8. 8

    Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2007).

  9. 9

    Szymanska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006).

  10. 10

    Wouters, M. & Carusotto, I. Superfluidity and critical velocities in nonequilibrium Bose–Einstein condensates, Phys. Rev. Lett. 105, 020602 (2010).

  11. 11

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

  12. 12

    Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

  13. 13

    Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

  14. 14

    Carusotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004).

  15. 15

    Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

  16. 16

    Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys. 6, 527–533 (2010).

  17. 17

    Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

  18. 18

    Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

  19. 19

    Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).

  20. 20

    Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

  21. 21

    Inouye, S. et al. Observation of vortex phase singularities in Bose–Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001).

  22. 22

    Neely, T. W., Samson, E. C., Bradley, A. S., Davis, M. J. & Anderson, B. P. Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010).

  23. 23

    Scheuer, J. & Orenstein, M. Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities. Science 285, 230–233 (1999).

  24. 24

    Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).

  25. 25

    Roumpos, G. et al. Single vortex–antivortex pair in an exciton–polariton condensate. Nature Phys. 7, 129–133 (2011).

  26. 26

    Frisch, T., Pomeau, Y. & Rica, S. Transition to dissipation in a model of superflow. Phys. Rev. Lett. 69, 1644–1647 (1992).

  27. 27

    Winiecki, T., Jackson, B., McCann, J. F. & Adams, C. S. Vortex shedding and drag in dilute Bose–Einstein condensates. J. Phys. B 33, 4069–4078 (2000).

  28. 28

    Henn, E. A. L. et al. Emergence of turbulence in an oscillating Bose–Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).

  29. 29

    Berloff, N. G. Turbulence in exciton–polariton condensates. Preprint at http://arxiv.org/abs/1010.5225 (2010).

  30. 30

    Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

  31. 31

    Amo, A. et al. Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B 82, 081301 (2010).

Download references

Acknowledgements

This work was partially supported by the Agence Nationale pour la Recherche (GEMINI 07NANO 07043), the IFRAF (Institut Francilien pour les atomes froids), project MIUR FIRB ItalNanoNet and the POLATOM ESF Research Networking Program. I.C. acknowledges financial support from the ERC through the QGBE grant. P.S.S.G. acknowledges support from CNPq, Brazil. A.B. and C.C. are members of the Institut Universitaire de France (IUF). The authors are grateful to G. Martiradonna for helping with the realization of the laser mask and to P. Cazzato for technical support.

Author information

Affiliations

Authors

Contributions

All authors contributed to the implementation and modelling of the experiment, interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to D. Sanvitto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 626 kb)

41566_2011_BFnphoton2011211_MOESM4_ESM.avi

Supplementary movie (AVI 6520 kb)

Supplementary information

Supplementary movie (AVI 6520 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sanvitto, D., Pigeon, S., Amo, A. et al. All-optical control of the quantum flow of a polariton condensate. Nature Photon 5, 610–614 (2011). https://doi.org/10.1038/nphoton.2011.211

Download citation

Further reading