Review Article | Published:

Optofluidics for energy applications

Nature Photonics volume 5, pages 583590 (2011) | Download Citation

Abstract

Since its emergence as a field, optofluidics has developed unique tools and techniques for enabling the simultaneous delivery of light and fluids with microscopic precision. In this Review, we describe the possibilities for applying these same capabilities to the field of energy. We focus in particular on optofluidic opportunities in sunlight-based fuel production in photobioreactors and photocatalytic systems, as well as optofluidically enabled solar energy collection and control. We then provide a series of physical and scaling arguments that demonstrate the potential benefits of incorporating optofluidic elements into energy systems. Throughout the Review we draw attention to the ways in which optofluidics must evolve to enable the up-scaling required to impact the energy field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Liquid mirror telescopes: History. J. Roy. Astron. Soc. Can. 85, 158–171 (1991).

  2. 2.

    , & Miniaturized total chemical-analysis systems: A novel concept for chemical sensing. Sensor. Actuat. B 1, 244–248 (1990).

  3. 3.

    et al. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261, 895–897 (1993).

  4. 4.

    et al. Zeptosens' protein microarrays: A novel high performance microarray platform for low abundance protein analysis. Proteomics 2, 383–393 (2002).

  5. 5.

    , & SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal. Chem. 73, 5525–5531 (2001).

  6. 6.

    , , , & Heat and fluid flow in an optical switch bubble. J. MEMS 15, 1528–1539 (2006).

  7. 7.

    , , , & Liquid-crystal blazed-grating beam deflector. Appl. Opt. 39, 6545–6555 (2000).

  8. 8.

    et al. Tunable microfluidic optical fiber. Appl. Phys. Lett. 80, 4294–4296 (2002).

  9. 9.

    , & Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

  10. 10.

    , & Integrated optofluidics: A new river of light. Nature Photon. 1, 106–114 (2007).

  11. 11.

    , & Optofluidics emerges from the laboratory. Photon. Spectra 42, 74–76 (2008).

  12. 12.

    , , , & Nanofluidic tuning of photonic crystal circuits. Opt. Lett. 31, 59–61 (2006).

  13. 13.

    et al. Temperature stabilization of optofluidic photonic crystal cavities. Appl. Phys. Lett. 94, 231114 (2009).

  14. 14.

    et al. Reconfigurable photonic crystal circuits. Laser Photon. Rev. 4, 192–204 (2010).

  15. 15.

    & Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004).

  16. 16.

    , , & Hydrodynamically tunable optofluidic cylindrical microlens. Lab Chip 7, 1303–1308 (2007).

  17. 17.

    , , , & Single mode optofluidic distributed feedback dye laser. Opt. Express 14, 696–701 (2006).

  18. 18.

    , , & Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006).

  19. 19.

    et al. Optofluidic 1 × 4 switch. Opt. Express 16, 13499–13508 (2008).

  20. 20.

    , , & Mechanically tunable optofluidic distributed feedback dye laser. Opt. Express 14, 10494–10499 (2006).

  21. 21.

    et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nature Photon. 3, 534–540 (2009).

  22. 22.

    , & A multiplexed optofluidic biomolecular sensor for low mass detection. Lab Chip 9, 2924–2932 (2009).

  23. 23.

    , , , & Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).

  24. 24.

    et al. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 620, 8–26 (2008).

  25. 25.

    & Survey of the year 2006 commercial optical biosensor literature. J. Mol. Recognit. 20, 300–366 (2007).

  26. 26.

    et al. On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Appl. Phys. Lett. 90, 211107 (2007).

  27. 27.

    et al. Optofluidic microscopy — a method for implementing a high resolution optical microscope on a chip. Lab Chip 6, 1274–1276 (2006).

  28. 28.

    et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010).

  29. 29.

    et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl Acad. Sci. USA 105, 10670–10675 (2008).

  30. 30.

    , & Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

  31. 31.

    et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).

  32. 32.

    et al. Whispering gallery mode carousel — a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express 17, 6230–6238 (2009).

  33. 33.

    et al. Optofluidic planar reactors for photocatalytic water treatment using solar energy. Biomicrofluidics 4, 043004 (2010).

  34. 34.

    , , & Energy biotechnology with cyanobacteria. Curr. Opin. Biotech. 20, 257–263 (2009).

  35. 35.

    & Closed photo-bioreactors as tools for biofuel production. Curr. Opin. Biotech. 20, 280–285 (2009).

  36. 36.

    et al. Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc. Natl Acad. Sci. USA 102, 850–855 (2005).

  37. 37.

    Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007).

  38. 38.

    , , , & Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int. J. Hydrog. Energy 31, 659–667 (2006).

  39. 39.

    , & Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnol. 27, 1177–1180 (2009).

  40. 40.

    & An Outlook on microalgal biofuels. Science 329, 796–799 (2010).

  41. 41.

    & Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14, 557–577 (2010).

  42. 42.

    , , & Photobioreactors: Light regime, mass transfer, and scaleup. J. Biotechnol. 70, 231–247 (1999).

  43. 43.

    , , & Microalgal bioreactors: Challenges and opportunities. Eng. Life Sci. 9, 178–189 (2009).

  44. 44.

    Photoautotrophic bioreactor using visible solar rays condensed by fresnel lenses and transmitted through optical fibers. Biotechnol. Bioeng. Symp. 15, 331–344 (1985).

  45. 45.

    et al. Design for a bioreactor with sunlight supply and operations systems for use in the space environment. Adv. Space Res. 9, 161–168 (1989).

  46. 46.

    , & An integrated solar and artificial light system for internal illumination of photobioreactors. J. Biotechnol. 70, 289–297 (1999).

  47. 47.

    et al. Photosynthetic CO2 mitigation using a novel membrane-based photobioreactor. J. Env. Eng. Manag. 16, 209–215 (2006).

  48. 48.

    , , , & Phototrophic hydrogen production in photobioreactors coupled with solarenergyexcited optical fibers. Int. J. Hydrog. Energy 33, 6886–6895 (2008).

  49. 49.

    , & Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3–5 using opticalfiberassisted illumination systems. Int. J. Hydrog. Energy 31, 2345–2355 (2006).

  50. 50.

    , , , & Engineering strategies for the enhanced photoH2 production using effluents of dark fermentation processes as substrate. Int. J. Hydrog. Energy 35, 13356–13364 (2010).

  51. 51.

    , & Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors. Biochem. Eng. J. 32, 33–42 (2006).

  52. 52.

    , & Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int. J. Hydrog. Energy 31, 1522–1526 (2006).

  53. 53.

    , , & Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol. Bioeng. 81, 193–210 (2003).

  54. 54.

    Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 9, 165–177 (2009).

  55. 55.

    , , & Design process of an area-efficient photobioreactor. Mar. Biotechnol. 10, 404–415 (2008).

  56. 56.

    , , & Plasmon-enhanced microalgal growth in miniphotobioreactors. Appl. Phys. Lett. 97, 043703 (2010).

  57. 57.

    , & Photoinhibition and its wavelength dependence in the cyanobacterium Anabaena variabilis. Arch. Microbiol. 147, 370–374 (1987).

  58. 58.

    , , & . Optofluidically enabled bio-energy production in ASME Int. Mech. Eng. Conf. Exposition (2010).

  59. 59.

    , & Optofluidic energy: An evanescent photobioreactor in 1st EOS Conf. Optofluidics (2011).

  60. 60.

    & Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc. Natl Acad. Sci. USA 103, 8564–8569 (2006).

  61. 61.

    , , & Turning carbon dioxide into fuel. Phil. Trans. R. Soc. A 368, 3343–3364 (2010).

  62. 62.

    Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275, 115–116 (1978).

  63. 63.

    , , & Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637–638 (1979).

  64. 64.

    Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

  65. 65.

    , , & Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4, 1259–1278 (2010).

  66. 66.

    & Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148, 191–205 (2009).

  67. 67.

    , & Basic research needs: Catalysis for energy (PNNL-17214) (US Department of Energy, 2007).

  68. 68.

    , , , & Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation. Appl. Catal. B 84, 112–118 (2008).

  69. 69.

    , , & High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731–737 (2009).

  70. 70.

    et al. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J. Membrane Sci. 319, 199–205 (2008).

  71. 71.

    & In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

  72. 72.

    Solar thermochemical production of hydrogen: A review. Sol. Energy 78, 603–615 (2005).

  73. 73.

    , , & Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

  74. 74.

    et al. Hydrogen production with a solar steam-methanol reformer and colloid nanocatalyst. Int. J. Hydrog. Energy 35, 118–126 (2010).

  75. 75.

    , & A microsolar collector for hydrogen production by methanol reforming. J. Sol. Energy Eng. Trans. ASME 132 (2010).

  76. 76.

    Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30, 231–295 (2004).

  77. 77.

    Solar collectors, energy storage, and materials (MIT, 1990).

  78. 78.

    & Design parameters of solar concentrating systems for CO2-mitigating algal photobioreactors. Energy 29, 1651–1657 (2004).

  79. 79.

    , , , & Electrowetting-based variable-focus lens for miniature systems. Opt. Rev. 12, 255–259 (2005).

  80. 80.

    Solar energy concentration with liquid lenses. Sol. Energy 18, 587–589 (1976).

  81. 81.

    An evaluation of various configurations for photoelectrochemical photovoltaic solar cells. Sol. Cells 6, 177–189 (1982).

  82. 82.

    & High-efficiency solar concentrator. JPL Deep Space Network Prog. Rep. 42, 99–109 (1976).

  83. 83.

    , , , & Nanofluid-based direct absorption solar collector. J. Ren. Sus. Energy 2, 033102 (2010).

  84. 84.

    , & Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J. Sol. Energy Eng. Trans. ASME 131, 041004 (2009).

  85. 85.

    & Immediate assisted solar direct contact membrane distillation in saline water desalination. J. Membrane Sci. 358, 122–130 (2010).

Download references

Acknowledgements

The authors acknowledge discussions with W. Song, J. Benemann and A. Kristensen. D.E. acknowledges support from the Academic Venture Fund of the Cornell Center for a Sustainable Future and the US National Science Foundation CBET division, through grant 0846489. D.S. acknowledges a visiting professorship in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, and ongoing funding from NSERC and Carbon Management Canada NCE, Theme-B, Project B04.

Author information

Author notes

    • David Erickson
    •  & David Sinton

    These authors contributed equally to this work.

Affiliations

  1. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA

    • David Erickson
  2. Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario M5S 3G8, Canada

    • David Sinton
  3. School of Engineering, École Polytechnique Fédéral Lausanne, Lausanne 1015, Switzerland

    • Demetri Psaltis

Authors

  1. Search for David Erickson in:

  2. Search for David Sinton in:

  3. Search for Demetri Psaltis in:

Contributions

D.E., D.S. and D.P. contributed overall equally to the concepts, research and writing of this paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to David Erickson or David Sinton or Demetri Psaltis.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nphoton.2011.209

Further reading