Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons

Abstract

Photonic crystal membranes provide a versatile planar platform for on-chip implementations of photonic quantum circuits1,2,3. One prominent quantum element is a coupled system consisting of a nanocavity and a single quantum dot4,5,6,7, which forms a fundamental building block for elaborate quantum information networks8,9,10 and a cavity quantum electrodynamic system controlled by single photons3. To date, no fast tuning mechanism is available to achieve control within the system coherence time. Here, we demonstrate dynamic tuning by monochromatic coherent acoustic phonons formed by a surface acoustic wave with frequencies exceeding 1.7 GHz, one order of magnitude faster than alternative approaches5,6,7. We resolve a periodic modulation of the optical mode exceeding eight times its linewidth, preserving both the spatial mode profile and a high quality factor. Because photonic crystal membranes confine photonic and phononic excitations11,12, coupling optical to acoustic frequencies, our technique opens up the way to coherent acoustic control of optomechanical crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tuning mechanism setup and experimental results.
Figure 2: Time-integrated emission spectra for three different nanocavities and SAW frequencies.
Figure 3: Numerical simulations.
Figure 4: Comparison of SAW phase-resolved experimental data with 3D-FDTD simulation results.

Similar content being viewed by others

References

  1. Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E. & Ryu, H-Y. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).

    Article  ADS  Google Scholar 

  2. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  3. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008).

    Article  ADS  Google Scholar 

  4. Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

    Article  ADS  Google Scholar 

  5. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  6. Faraon, A., Majumdar, A., Kim H., Petroff, P. & Vučković, J. Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity. Phys. Rev. Lett. 104, 047402 (2010).

    Article  ADS  Google Scholar 

  7. Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y. & Arakawa, Y. Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system. Nature Phys. 6, 279–283 (2010).

    Article  ADS  Google Scholar 

  8. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  ADS  Google Scholar 

  9. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  10. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  11. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article  ADS  Google Scholar 

  12. Mohammadi, S., Eftekhar, A. A., Khelif, A. & Adibi, A. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Opt. Express 18, 9164–9172 (2010).

    Article  ADS  Google Scholar 

  13. Wixforth, A., Kotthaus, J. P. & Weimann, G. Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron gas. Phys. Rev. Lett. 56, 2104–2106 (1986).

    Article  ADS  Google Scholar 

  14. Kukushkin, I. V., Smet, J. H., Scarola, V. W., Umansky, V. & von Klitzing, K. Dispersion of the excitations of the fractional quantum Hall states. Science 324, 1044–1047 (2009).

    Article  ADS  Google Scholar 

  15. Stotz, J. A. H., Hey, R., Santos, P. V. & Ploog, K. H. Coherent spin transport through dynamic quantum dots. Nature Mater. 4, 585–588 (2005).

    Article  ADS  Google Scholar 

  16. Metcalfe, M., Carr, S. M., Muller, A., Solomon, G. S. & Lawall, J. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett. 105, 037401 (2010).

    Article  ADS  Google Scholar 

  17. Völk, S. et al. Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves. Nano Lett. 10, 3399–3407 (2010).

    Article  ADS  Google Scholar 

  18. Krishnamurthy, S. & Santos, P. V. Optical modulation in photonic band gap structures by surface acoustic waves. J. Appl. Phys. 96, 1803–1810 (2004).

    Article  ADS  Google Scholar 

  19. de Lima, M. M., van der Poel, M., Santos, P. V. & Hvam, J. M. Phonon-induced polariton superlattices. Phys. Rev. Lett. 97, 045501 (2006).

    Article  ADS  Google Scholar 

  20. de Lima, M. M. & Santos, P. V. Modulation of photonic structures by surface acoustic waves. Rep. Prog. Phys. 68, 1639–1701 (2005).

    Article  ADS  Google Scholar 

  21. Ruppert, C. et al. Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films. Phys. Rev. B 82, 081416 (R) (2010).

    Article  ADS  Google Scholar 

  22. Akahane, Y., Asano, T., Song, B-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  23. Berstermann, T. et al. Optical bandpass switching by modulating a microcavity using ultrafast acoustics. Phys. Rev. B 81, 085316 (2010).

    Article  ADS  Google Scholar 

  24. Santos, P. V. Collinear light modulation by surface acoustic waves in laterally structured semiconductors. J. Appl. Phys. 89, 5060–5066 (2001).

    Article  ADS  Google Scholar 

  25. Völk, S. et al. Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy. Appl. Phys. Lett. 98, 023109 (2011).

    Article  ADS  Google Scholar 

  26. Kress, A. et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals. Phys. Rev. B 71, 241304 (R) (2005).

    Article  ADS  Google Scholar 

  27. Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photon. 1, 49–52 (2007).

    Article  ADS  Google Scholar 

  28. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  ADS  Google Scholar 

  29. Mohammadi, S., Eftekhar, A. A., Hunt, W. D. & Adibi, A. High-Q micromechanical resonators in a two-dimensional phononic crystal slab. Appl. Phys. Lett. 94, 051906 (2009).

    Article  ADS  Google Scholar 

  30. Eichenfield, M., Chan, J., Safavi-Naeini, A. H., Vahala, K. J. & Painter, O. Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals. Opt. Express 17, 20078–20098 (2009).

    Article  ADS  Google Scholar 

  31. Gavartin, E. et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys. Rev. Lett. 106, 203902 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the cluster of excellence ‘Nanosystems Initiative Munich’ (NIM) and via the Emmy-Noether-Programme (KR 3790/2-1), by the Bavaria-California Technology Center (BaCaTeC), by the National Science Foundation (NSF) via NIRT grant no. 0304678 and Marie Curie EXT-CT-2006-042580. A portion of this work was carried out in the UCSB nanofabrication facility, part of the NSF-funded NNIN network. S.M.T. acknowledges financial support from the US Department of Education GAANN grant. D.A.F. acknowledges support from the Bayerische Forschungsstiftung.

Author information

Authors and Affiliations

Authors

Contributions

D.A.F. performed the experiments and 3D-FDTD simulations. D.A.F. and S.M.T. designed, fabricated and characterized the devices. H.K. and P.M.P. fabricated the molecular beam epitaxy material. D.A.F. and H.J.K. performed data analysis and modelling, conceived the 3D-FDTD simulations and wrote the manuscript with contributions from all other authors. H.J.K., D.B., P.M.P. and A.W. inspired and supervised the project.

Corresponding author

Correspondence to Hubert J. Krenner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrmann, D., Thon, S., Kim, H. et al. Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nature Photon 5, 605–609 (2011). https://doi.org/10.1038/nphoton.2011.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing