Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum communication with Gaussian channels of zero quantum capacity

Abstract

As with classical information1,2, error-correcting codes enable reliable transmission of quantum information through noisy or lossy channels3,4,5. In contrast to classical theory, imperfect quantum channels exhibit a strong kind of synergy: pairs of discrete memoryless quantum channels exist, each of zero quantum capacity, which acquire positive quantum capacity when used together6. Here, we show that this ‘superactivation’ phenomenon also occurs in the more realistic setting of optical channels with attenuation and Gaussian noise7,8. This paves the way for its experimental realization and application in real-world communications systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Symplectic extensions of Gaussian channels.
Figure 2: A family of examples.
Figure 3: Superactivation for a wide range of parameters.
Figure 4: Generating the Hamiltonian.

Similar content being viewed by others

References

  1. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).

    Article  MathSciNet  Google Scholar 

  2. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, 1991).

    Book  Google Scholar 

  3. Devetak, I. The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51, 44–55 (2005).

    Article  MathSciNet  Google Scholar 

  4. Shor, P. W. The quantum channel capacity and coherent information, in MSRI Workshop on Quantum Computation (Berkeley, 2002), available at http://www.msri.org/publications/ln/msri/2002/quantumcrypto/shor/1/.

  5. Lloyd, S. Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  6. Smith, G. & Yard, J. Quantum communication with zero-capacity channels. Science 321, 1812–1815 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  7. Holevo, A. S. & Werner, R. F. Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63, 032312 (2001).

    Article  ADS  Google Scholar 

  8. Harrington, J. & Preskill, J. Achievable rates for the Gaussian quantum channel. Phys. Rev. A 64, 062301 (2001).

    Article  ADS  Google Scholar 

  9. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, 175–179 (IEEE Press, 1984).

    Google Scholar 

  10. Eisert, J. & Wolf, M. M. Gaussian quantum channels, in Quantum Information with Continuous Variables of Atoms and Light, 23–42 (Imperial College Press, 2007).

    Chapter  Google Scholar 

  11. DiGuglielmo, J. et al. Preparing the bound instance of quantum entanglement. Preprint at http://www.arxiv.org/abs/1006.4651 (2010).

  12. Wolf, M. M., Perez-Garcia, D. & Giedke, G. Quantum capacities of bosonic channels. Phys. Rev. Lett. 98, 130501 (2007).

    Article  ADS  Google Scholar 

  13. Giovannetti, V. et al. Classical capacity of the lossy bosonic channel: the exact solution. Phys. Rev. Lett. 92, 027902 (2004).

    Article  ADS  Google Scholar 

  14. Horodecki, P. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333–339 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. Horodecki, P., Horodecki, M. & Horodecki, R. Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056–1059 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  16. Shor, P. W., Smolin, J. A. & Terhal, B. M. Nonadditivity of bipartite distillable entanglement follows from a conjecture on bound entangled Werner states. Phys. Rev. Lett. 86, 2681–2684 (2000).

    Article  ADS  Google Scholar 

  17. Pirandola, S., Mancini, S., Lloyd, S. & Braunstein, S. L. Continuous-variable quantum cryptography using two-way quantum communication. Nature Phys. 4, 726–730 (2008).

    Article  ADS  Google Scholar 

  18. Hastings, M. Superadditivity of communication capacity using entangled inputs. Nature Phys. 5, 255–257 (2009).

    Article  ADS  Google Scholar 

  19. Smith, G. & Smolin, J. A. Extensive nonadditivity of privacy. Phys. Rev. Lett. 103, 120503 (2009).

    Article  ADS  Google Scholar 

  20. Li, K., Winter, A., Zou, X. & Guo, G-C. Private capacity of quantum channels is not additive. Phys. Rev. Lett. 103, 120501 (2009).

    Article  ADS  Google Scholar 

  21. Czekaj, L. & Horodecki, P. Purely quantum superadditivity of classical capacities of quantum multiple access channels. Phys. Rev. Lett. 102, 110505 (2009).

    Article  ADS  Google Scholar 

  22. Czekaj, L., Korbicz, J. K., Chhajlany, R. W. & Horodecki, P. Quantum superadditivity in linear optics networks: sending bits via multiple-access Gaussian channels. Phys. Rev. A 82, 020302(R)10.1103/PhysRevA.82.020302 (2010).

  23. Devetak, I. & Shor, P. W. The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256, 287–303 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  24. Horodecki, M., Horodecki, P. & Horodecki, R. Mixed-state entanglement and distillation: is there a ‘bound’ entanglement in nature? Phys. Rev. Lett. 80, 5239–5242 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  25. Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996).

    Google Scholar 

  26. Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  27. Werner, R. F. & Wolf, M. M. Bound entangled Gaussian states. Phys. Rev. Lett. 86, 3658–3661 (2001).

    Article  ADS  Google Scholar 

  28. Vahlbruch, H. et al. Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 100, 033602 (2008).

    Article  ADS  Google Scholar 

  29. Giedke, G., Duan, R., Cirac, J. I. & Zoller, P. Distillability criterion for all bipartite Gaussian states. Quant. Inf. Comp. 1, 79–86 (2001).

    MathSciNet  MATH  Google Scholar 

  30. Horodecki, K., Horodecki, M., Horodecki, P. & Oppenheim, J. Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank J. Eisert and M.M. Wolf for helpful advice in the early stages of this work and C.H. Bennett for many useful suggestions. G.S. and J.Y. are especially grateful to the Institut Mittag-Leffler, where some of this work was performed, for their hospitality. J.Y.'s research was supported by grants through the Laboratory Directed Research and Development programme of the US Department of Energy. G.S. and J.A.S. were supported by the Defense Advanced Research Projects Agency (QUEST contract HR0011-09-C-0047).

Author information

Authors and Affiliations

Authors

Contributions

G.S., J.A.S. and J.Y. designed the research, carried out the research, and wrote the manuscript.

Corresponding author

Correspondence to Graeme Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, G., Smolin, J. & Yard, J. Quantum communication with Gaussian channels of zero quantum capacity. Nature Photon 5, 624–627 (2011). https://doi.org/10.1038/nphoton.2011.203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing