Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sub-picosecond phase-sensitive optical pulse characterization on a chip

Abstract

The recent introduction1,2,3 of coherent optical communications has created a compelling need for ultrafast phase-sensitive measurement techniques operating at milliwatt peak power levels and in timescales ranging from sub-picoseconds to nanoseconds. Previous reports of ultrafast optical signal measurements4,5,6,7 in integrated platforms8,9,10 include time-lens temporal imaging5 on a silicon chip8,9 and waveguide-based frequency-resolved optical gating (FROG)4,6,10. Time-lens imaging is phase-insensitive, and waveguide-based FROG methods require the integration of long tunable delay lines, which is still an unsolved challenge. Here, we report a device capable of characterizing both the amplitude and phase of ultrafast optical pulses with the aid of a synchronized incoherently related clock pulse. It is based on a novel variation of spectral phase interferometry for direct electric-field reconstruction (SPIDER)4,7 that exploits degenerate four-wave mixing in a CMOS-compatible chip. We measure pulses with a peak power of <100 mW, a frequency bandwidth of >1 THz, and up to 100 ps pulsewidths, yielding a time–bandwidth product of >100.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure.
Figure 2: Output spectra of the FWM-X-SPIDER device for a complex waveform with a bandwidth of 1 THz.
Figure 3: Retrieved phase and amplitude profiles for the spectra in Fig. 2 and experimentally measured FROG SHG spectrograms.
Figure 4: Reconstruction of long-duration (highly chirped) Gaussian pulses with 5 nm (FWHM = 0.53 THz) bandwidth centred at 1,550 nm and dispersed through different SMF sections, applying the novel (Fresnel) algorithm.

Similar content being viewed by others

References

  1. Slavik, R. et al. All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photon. 4, 690–695 (2010).

    Article  ADS  Google Scholar 

  2. Essiambre, R. J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010).

    Article  ADS  Google Scholar 

  3. Nature Photonics Workshop on the Future of Optical Communication, Tokyo, October 2007. OFC/NOFC Workshop: Exascale Computing: Where Optics Meets Electronics, OMA Los Angeles, March 2011.

  4. Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009).

    Article  Google Scholar 

  5. Bennett, C. V., Scott, R. P. & Kolner, B. H. Temporal magnification and reversal of 100 Gb/s optical-data with an up-conversion time microscope. Appl. Phys. Lett. 65, 2513–2515 (1994).

    Article  ADS  Google Scholar 

  6. Trebino, R. Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

  7. Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

    Article  ADS  Google Scholar 

  8. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

    Article  ADS  Google Scholar 

  9. Salem, R. et al. Optical time lens based on four-wave mixing on a silicon chip. Opt. Lett. 33, 1047–1049 (2008).

    Article  ADS  Google Scholar 

  10. Tien, E. K., Sang, X. Z., Qing, F., Song, Q. & Boyraz, O. Ultrafast pulse characterization using cross phase modulation in silicon. Appl. Phys. Lett. 95, 051101 (2009).

    Article  ADS  Google Scholar 

  11. Anderson, M. E., Monmayrant, A., Gorza, S. P., Wasylczyk, P. & Walmsley, I. A. SPIDER: a decade of measuring ultrashort pulses. Laser Phys. Lett. 5, 259–266 (2008).

    Article  ADS  Google Scholar 

  12. Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982).

    Article  ADS  Google Scholar 

  13. Iaconis, C. & Walmsley, I. A. Self-referencing spectral interferometry for measuring ultrashort optical pulses. IEEE J. Quant. Electron. 35, 501–509 (1999).

    Article  ADS  Google Scholar 

  14. Bromage, J., Dorrer, C., Begishev, I. A., Usechak, N. G. & Zuegel, J. D. Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry. Opt. Lett. 31, 3523–3525 (2006).

    Article  ADS  Google Scholar 

  15. Dorrer, C. & Bromage, J. High-sensitivity optical pulse characterization using Sagnac electro-optic spectral shearing interferometry. Opt. Lett. 35, 1353–1355 (2010).

    Article  ADS  Google Scholar 

  16. Gallmann, L. et al. Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1314–1316 (1999).

    Article  ADS  Google Scholar 

  17. Dorrer, C. et al. Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1644–1646 (1999).

    Article  ADS  Google Scholar 

  18. Keusters, D. et al. Relative-phase ambiguities in measurements of ultrashort pulses with well-separated multiple frequency components. J. Opt. Soc. Am. B 20, 2226–2237 (2003).

    Article  ADS  Google Scholar 

  19. Hirasawa, M. et al. Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses. Appl. Phys. B 74(Suppl. S), S225–S229 (2002).

    Article  Google Scholar 

  20. Wemans, J., Figueira, G., Lopes, N. & Cardoso, L. Self-referencing spectral phase interferometry for direct electric-field reconstruction with chirped pulses. Opt. Lett. 31, 2217–2219 (2006).

    Article  ADS  Google Scholar 

  21. Londero, P., Anderson, M. E., Radzewicz, C., Iaconis, C. & Walmsley, I. A. Measuring ultrafast pulses in the near-ultraviolet using spectral phase interferometry for direct electric field reconstruction. J. Mod. Opt. 50, 179–184 (2003).

    Article  ADS  Google Scholar 

  22. Koke, S., Birkholz, S., Bethge, J., Grebing, C. & Steinmeyer, G. Self-diffraction SPIDER, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD), paper CMK3 (Optical Society of America, 2010).

  23. Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photon. 2, 737–740 (2008).

    Article  ADS  Google Scholar 

  24. Ferrera, M. et al. Low power four wave mixing in an integrated, micro-ring resonator with Q=1.2 million. Opt. Express 17, 14098–14103 (2009).

    Article  ADS  Google Scholar 

  25. Peccianti, M. et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt. Express 18, 7625–7633 (2010).

    Article  ADS  Google Scholar 

  26. Pasquazi, A. et al. Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide. Opt. Express 18, 7634–7641 (2010).

    Article  ADS  Google Scholar 

  27. Azaña, J. & Muriel, M. A. Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings. IEEE J. Quantum Electron. 36, 517–526 (2000).

    Article  ADS  Google Scholar 

  28. Dorrer, C. Influence of the calibration of the detector on spectral interferometry. J. Opt. Soc. Am. B 16, 1160–1168 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) Centres of Excellence and Discovery programmes, the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), the Natural Sciences and Engineering Research Council of Canada (NSERC), NSERC Strategic Projects, and the INRS. M.P. acknowledges support from the Marie Curie People project TOBIAS PIOF-GA-2008-221262. The authors are grateful to M. Clerici for enlightening discussions and technical help.

Author information

Authors and Affiliations

Authors

Contributions

A.P. designed the experiment, the novel algorithm and analysed experimental data. A.P., Y.P. and M.P. carried out the experiment. M.P. built and calibrated the FROG setup for experiment validation. J.A. contributed to the theoretical derivations. S.T.C. and B.E. designed and fabricated the sample. J.A., R.M. and D.M. supervised the project. A.P., M.P., R.M., J.A. and D.M. wrote the manuscript.

Corresponding author

Correspondence to Alessia Pasquazi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquazi, A., Peccianti, M., Park, Y. et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nature Photon 5, 618–623 (2011). https://doi.org/10.1038/nphoton.2011.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing