Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells


Nanopatterning has gained tremendous importance in the field of photovoltaics, as absorption of sunlight in solar cells can be enhanced drastically by proper engineering of photonic nanostructures1,2,3,4,5,6,7,8. However, despite intensive efforts, neither the ideal surface morphology nor the ideal scattering characteristics for optimum light trapping have been identified. Experimentally, a method capable of implementing arbitrarily designed surface morphologies directly into functional devices is desirable. Here, we establish a nanomoulding process that provides exactly such a platform, enabling precise, large-area, nanoscale patterning of functional zinc oxide films at low cost. We illustrate the application of nanomoulded zinc oxide films as transparent front electrodes in amorphous silicon solar cells, demonstrating excellent initial conversion efficiencies of 10.1%. In the quest to find the most efficient light-harvesting scheme, we anticipate that nanomoulding will catalyse the development and integration of exciting new nanophotonic structures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of master test structures and their corresponding nanomoulded ZnO replicas.
Figure 2: Schematic process flow for nanomoulding of ZnO.
Figure 3: Morphological fidelity analysis for ZnO nanomoulding.
Figure 4: Comparison of optical scattering properties.
Figure 5: Amorphous silicon solar cells on nanomoulded ZnO.


  1. Zhu, J., Hsu, C-M., Yu, Z., Fan, S. & Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010).

    Article  ADS  Google Scholar 

  2. Garnett, E. & Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).

    Article  ADS  Google Scholar 

  3. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

    Article  ADS  Google Scholar 

  4. Cao, L. et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010).

    Article  ADS  Google Scholar 

  5. Han, S. E. & Chen, G. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10, 1012–1015 (2010).

    Article  ADS  Google Scholar 

  6. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  7. Sai, H., Fujiwara, H., Kondo, M. & Kanamori, Y. Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern. Appl. Phys. Lett. 93, 143501 (2008).

    Article  ADS  Google Scholar 

  8. Battaglia, C. et al. Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett. 11, 661–665 (2010).

    Article  ADS  Google Scholar 

  9. Lincot, D. Solution growth of functional zinc oxide films and nanostructures. MRS Bull. 35, 778–789 (2010).

    Article  Google Scholar 

  10. Özgür, U. et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  11. Tian, Z. R. et al. Complex and oriented ZnO nanostructures. Nature Mater. 2, 821–826 (2003).

    Article  ADS  Google Scholar 

  12. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  ADS  Google Scholar 

  13. Faÿ, S., Steinhauser, J., Oliveira, N., Vallat-Sauvain, E. & Ballif, C. Optoelectronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 515, 8558–8561 (2007).

    Article  ADS  Google Scholar 

  14. Berginski, M., Hüpkes, J., Reetz, W., Rech, B. & Wuttig, M. Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application. Thin Solid Films 516, 5836–5841 (2008).

    Article  ADS  Google Scholar 

  15. Benagli, S. et al. High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor. Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2293–2298 (2009).

  16. Bailat, J. et al. Recent developments of high-efficiency micro-morph tandem solar cells in KAI-M PECVD reactors. Proceedings of the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 2720–2723 (2010).

  17. Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907 (1982).

    Article  ADS  Google Scholar 

  18. Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells PNAS. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    Article  ADS  Google Scholar 

  19. Escarré, J., Söderström, K., Haug, F-J., Battaglia, C. & Ballif, C. High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications. Sol. Energ. Mater. Sol. Cells. 95, 881–886 (2011).

    Article  Google Scholar 

  20. Python, M. et al. Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells. Sol. Energ. Mater. Sol. Cell. 93, 1714–1720 (2009).

    Article  Google Scholar 

  21. Despeisse, M. et al. Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Appl. Phys. Lett. 96, 073507 (2010).

    Article  ADS  Google Scholar 

  22. Cuony, P. et al. Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells. Appl. Phys. Lett. 97, 213502 (2010).

    Article  ADS  Google Scholar 

  23. Battaglia, C. et al. Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting. Appl. Phys. Lett. 96, 213504 (2010).

    Article  ADS  Google Scholar 

  24. Ahn, S. H. & Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304–2310 (2009).

    Article  Google Scholar 

  25. Lee, W., Ji, R., Gösele, U. & Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Mater. 5, 741–747 (2006).

    Article  ADS  Google Scholar 

Download references


The authors thank D. Alexander and M. Leboeuf for assistance with the FIB and AFM, respectively, W. Lee for providing the ATA master, Z. Holman and P. Cuony for careful proof-reading of the manuscript, and the Swiss Federal Energy Office and the Swiss National Science Foundation for funding (under project no. 101191 and grant no. 200021 12577/1).

Author information

Authors and Affiliations



C.B. conceived the nanomoulding method and coordinated the work. J.E. carried out the first nanomoulding experiments. K.S. fabricated the nanomoulded grating. M.C. deposited the silicon layers. C.B. characterized the nanomoulded ZnO, processed and measured the cells, performed the data analysis and wrote the manuscript. M.D. led the silicon layer development. F.-J.H. led the nanoimprinting activities. Ch.B. supervised the work.

Corresponding author

Correspondence to Corsin Battaglia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Battaglia, C., Escarré, J., Söderström, K. et al. Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nature Photon 5, 535–538 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing