Abstract
Nematogens rotate by the application of external fields, thereby enabling optical modulation. This principle has had a profound impact on our daily lives through the plethora of liquid-crystal displays in use around us1,2. However, the wider use of nematic liquid crystals, particularly in microdisplays3 and information processing, has been hampered by their slow response times. In nematogens, rotational and translational molecular motions are coupled4, so flow is inevitably linked with optical modulation5,6. This linkage motivated us to fuse microfluidics with anisotropic liquids and introduce an optofluidic7,8 modulator that exhibits a submillisecond (250 µs) symmetric response and can operate at frequencies up to 1 kHz. The modulator is based on peristaltic nematogen microflows9 realized in polydimethylsiloxane microfluidics. The latter simultaneously permits peristalsis by means of elastomeric deformation, nematogen alignment and rapid prototyping through cast-moulding. Together with large-scale, vertical integration and piezoelectric nanotechnologies, this optofluidic paradigm can enable high-density and three-dimensional architectures of fast modulators.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Gibbons, W. M., Shannon, P. J., Sun, S. T. & Swetlin, B. J. Surface mediated alignment of nematic liquid-crystals with polarized laser-light. Nature 351, 49–50 (1991).
Schadt, M., Seiberle, H. & Schuster, A. Optical patterning of multidomain liquid-crystal displays with wide viewing angles. Nature 381, 212–215 (1996).
Vettese, D. Liquid crystal on silicon. Nature Photon. 4, 752–754 (2010).
De Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 198 (Oxford Science Publications, 1993).
Jewell, S. A., Cornford, S. L., Yang, F., Cann, P. S. & Sambles, J. R. Flow-driven transition and associated velocity profiles in a nematic liquid-crystal cell. Phys. Rev. E 80, 041706 (2009).
Waton, G., Ferre, A., Candau, S., Perbet, J. N. & Hareng, M. Characterization of distortions induced by a flow or an electric field in nemactics using conoscopic measurements Mol. Cryst. Liq. Cryst. 78, 237–249 (1981).
Psaltis, D., Quake, S. R. & Yang, C. H. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).
Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: a new river of light. Nature Photon. 1, 106–114 (2007).
Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).
Cui, X. Q. et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl Acad. Sci. USA 105, 10670–10675 (2008).
Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).
Song, W. Z., Vasdekis, A. E., Li, Z. Y. & Psaltis, D. Optofluidic evanescent dye laser based on a distributed feedback circular grating. Appl. Phys. Lett. 94, 161110 (2009).
Haakestad, M. W. et al. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photon. Tech. Lett. 17, 819–821 (2005).
Reinitzer, F. Beitrage zur Kenntniss des Cholesterins. Monatsh. Chemie 9, 421–425 (1888).
Khoo, I. C. Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).
Ikeda, T. & Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid crystal films Science 268, 1873–1875 (1995).
Humar, M., Ravnik, M., Pajk, S. & Musevic, I. Electrically tunable liquid crystal optical microresonators. Nature Photon. 3, 595–600 (2009).
Kurokawa, T. & Fukushima, S. Spatial light modulators using ferroelectric liquid-crystal. Opt. Quant. Electron. 24, 1151–1163 (1992).
Khoo, I. C., Park, J. H. & Liou, J. D. Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal. J. Opt. Soc. Am. B 25, 1931–1937 (2008).
Castles, F., Morris, S. M., Gardiner, D. J., Malik, Q. M. & Coles, H. J. Ultra-fast-switching flexoelectric liquid-crystal display with high contrast. J. Soc. Inf. Display 18, 128–133 (2010).
Jewell, S. A. & Sambles, J. R. Dynamic response of a dual-frequency chiral hybrid aligned nematic liquid-crystal cell. Phys. Rev. E 73, 011706 (2006).
Blanche, P.-A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010).
Jaffrin, M. Y. & Shappiro, A. H. Peristaltic pumping. Annu. Rev. Fluid Mech. 3, 13–37 (1971).
Smits, J. G. Piezoelectric micropump with 3 valves working peristatically. Sensor Actuat. A 21, 203–206 (1990).
Pasechnik, S. et al. Oscillating Poiseuille flow in photo-aligned liquid crystal cells. Liq. Cryst. 33, 1153–1165 (2006).
Choi, M. C. et al. Ordered patterns of liquid crystal toroidal defects by microchannel confinement. Proc. Natl Acad. Sci. USA 101, 17340–17344 (2004).
Barbero, G., Madhusudana, N. V., Palierne, J. F. & Durand, G. Optical determination of large distortion surface anchoring torques in a nematic liquid-crystal. Phys. Lett. A 103, 385–388 (1984).
McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).
Wunderlich, B. K., Klessinger, U. A. & Bausch, A. R. Diffusive spreading of time-dependent pressures in elastic microfluidic devices. Lab Chip 10, 1025–1029 (2010).
Boamfa, M. I., Lazarenko, S. V., Vermolen, E. C. M., Kirilyuk, A. & Racing, T. Magnetic field alignment of liquid crystals for fast display applications. Adv. Mater. 17, 610–614 (2005).
Shamai, R. & Levy, U. On chip tunable micro ring resonator actuated by electrowetting. Opt. Express 17, 1116–1125 (2009).
Hoshino, K. & Shimoyama, I. Analysis of elastic micro optical components under large deformation. J. Micromech. Microeng. 13, 149–154 (2003).
Qin, Y., Wang, X. & Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2009).
Woltman, S. J., Jay, G. D. & Crawford, G. P. Liquid-crystal materials find a new order in biomedical applications. Nature Mater. 6, 929–938 (2007).
Yu, L., Li, C. M., Zhou, Q. & Luong, J. H. T. Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay. Bioconj. Chem. 18, 281–287 (2007).
Pasechnik, S. V., Chigrinov, V. G., Shmeliova, D. V., Tsvetkov, V. A. & Voronov, A. N. Anisotropic shear viscosity in nematic liquid crystals: new optical measurement method. Liquid Cryst. 31, 585–592 (2004).
Acknowledgements
The authors thank J.-F. Molinari, N. Stergiopoulos and S. Maerkl for fruitful discussions on time-domain elastomer modelling methods, oscillatory flows of viscous liquids and microfluidic flow architectures, respectively.
Author information
Authors and Affiliations
Contributions
A.E.V. and D.P. conceived the peristaltic strategy. J.G.C. performed the experimental and numerical flow characterization and conoscopic measurements. A.E.V. designed the experiments, built the experimental apparatus, and performed the optical experiments, calculations and microfabrication. L.D.S. supplied background in liquid crystals and materials. A.E.V. and D.P. wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 483 kb)
Supplementary Movie
Supplementary Movie (AVI 1732 kb)
Rights and permissions
About this article
Cite this article
Cuennet, J., Vasdekis, A., De Sio, L. et al. Optofluidic modulator based on peristaltic nematogen microflows. Nature Photon 5, 234–238 (2011). https://doi.org/10.1038/nphoton.2011.18
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2011.18
This article is cited by
-
Numerical Modeling of an Integrable and Tunable Plasmonic Pressure Sensor with Nanostructure Grating
Plasmonics (2021)
-
Microfluidic control over topological states in channel-confined nematic flows
Nature Communications (2020)
-
Optofluidic variable optical path modulator
Scientific Reports (2019)
-
The Large and Tunable Nonlinear Absorption Response of Graphene Oxide Liquid Crystals
Journal of Electronic Materials (2019)
-
Self-reporting and self-regulating liquid crystals
Nature (2018)