Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optofluidic modulator based on peristaltic nematogen microflows

Abstract

Nematogens rotate by the application of external fields, thereby enabling optical modulation. This principle has had a profound impact on our daily lives through the plethora of liquid-crystal displays in use around us1,2. However, the wider use of nematic liquid crystals, particularly in microdisplays3 and information processing, has been hampered by their slow response times. In nematogens, rotational and translational molecular motions are coupled4, so flow is inevitably linked with optical modulation5,6. This linkage motivated us to fuse microfluidics with anisotropic liquids and introduce an optofluidic7,8 modulator that exhibits a submillisecond (250 µs) symmetric response and can operate at frequencies up to 1 kHz. The modulator is based on peristaltic nematogen microflows9 realized in polydimethylsiloxane microfluidics. The latter simultaneously permits peristalsis by means of elastomeric deformation, nematogen alignment and rapid prototyping through cast-moulding. Together with large-scale, vertical integration and piezoelectric nanotechnologies, this optofluidic paradigm can enable high-density and three-dimensional architectures of fast modulators.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Concept of peristaltic flows of nematogens in microfluidic channels.
Figure 2: Steady-state analysis of nematogens in confined geometries and peristaltic flow visualization.
Figure 3: Optical modulation.
Figure 4: Performance at 1 kHz.

References

  1. Gibbons, W. M., Shannon, P. J., Sun, S. T. & Swetlin, B. J. Surface mediated alignment of nematic liquid-crystals with polarized laser-light. Nature 351, 49–50 (1991).

    ADS  Article  Google Scholar 

  2. Schadt, M., Seiberle, H. & Schuster, A. Optical patterning of multidomain liquid-crystal displays with wide viewing angles. Nature 381, 212–215 (1996).

    ADS  Article  Google Scholar 

  3. Vettese, D. Liquid crystal on silicon. Nature Photon. 4, 752–754 (2010).

    ADS  Article  Google Scholar 

  4. De Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 198 (Oxford Science Publications, 1993).

  5. Jewell, S. A., Cornford, S. L., Yang, F., Cann, P. S. & Sambles, J. R. Flow-driven transition and associated velocity profiles in a nematic liquid-crystal cell. Phys. Rev. E 80, 041706 (2009).

    ADS  Article  Google Scholar 

  6. Waton, G., Ferre, A., Candau, S., Perbet, J. N. & Hareng, M. Characterization of distortions induced by a flow or an electric field in nemactics using conoscopic measurements Mol. Cryst. Liq. Cryst. 78, 237–249 (1981).

    Article  Google Scholar 

  7. Psaltis, D., Quake, S. R. & Yang, C. H. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    ADS  Article  Google Scholar 

  8. Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: a new river of light. Nature Photon. 1, 106–114 (2007).

    ADS  Article  Google Scholar 

  9. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    ADS  Article  Google Scholar 

  10. Cui, X. Q. et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl Acad. Sci. USA 105, 10670–10675 (2008).

    ADS  Article  Google Scholar 

  11. Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).

    ADS  Article  Google Scholar 

  12. Song, W. Z., Vasdekis, A. E., Li, Z. Y. & Psaltis, D. Optofluidic evanescent dye laser based on a distributed feedback circular grating. Appl. Phys. Lett. 94, 161110 (2009).

    ADS  Article  Google Scholar 

  13. Haakestad, M. W. et al. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photon. Tech. Lett. 17, 819–821 (2005).

    ADS  Article  Google Scholar 

  14. Reinitzer, F. Beitrage zur Kenntniss des Cholesterins. Monatsh. Chemie 9, 421–425 (1888).

    Article  Google Scholar 

  15. Khoo, I. C. Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

  16. Ikeda, T. & Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid crystal films Science 268, 1873–1875 (1995).

    ADS  Article  Google Scholar 

  17. Humar, M., Ravnik, M., Pajk, S. & Musevic, I. Electrically tunable liquid crystal optical microresonators. Nature Photon. 3, 595–600 (2009).

    ADS  Article  Google Scholar 

  18. Kurokawa, T. & Fukushima, S. Spatial light modulators using ferroelectric liquid-crystal. Opt. Quant. Electron. 24, 1151–1163 (1992).

    Article  Google Scholar 

  19. Khoo, I. C., Park, J. H. & Liou, J. D. Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal. J. Opt. Soc. Am. B 25, 1931–1937 (2008).

    ADS  Article  Google Scholar 

  20. Castles, F., Morris, S. M., Gardiner, D. J., Malik, Q. M. & Coles, H. J. Ultra-fast-switching flexoelectric liquid-crystal display with high contrast. J. Soc. Inf. Display 18, 128–133 (2010).

    Article  Google Scholar 

  21. Jewell, S. A. & Sambles, J. R. Dynamic response of a dual-frequency chiral hybrid aligned nematic liquid-crystal cell. Phys. Rev. E 73, 011706 (2006).

    ADS  Article  Google Scholar 

  22. Blanche, P.-A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010).

    ADS  Article  Google Scholar 

  23. Jaffrin, M. Y. & Shappiro, A. H. Peristaltic pumping. Annu. Rev. Fluid Mech. 3, 13–37 (1971).

    ADS  Article  Google Scholar 

  24. Smits, J. G. Piezoelectric micropump with 3 valves working peristatically. Sensor Actuat. A 21, 203–206 (1990).

    Article  Google Scholar 

  25. Pasechnik, S. et al. Oscillating Poiseuille flow in photo-aligned liquid crystal cells. Liq. Cryst. 33, 1153–1165 (2006).

    Article  Google Scholar 

  26. Choi, M. C. et al. Ordered patterns of liquid crystal toroidal defects by microchannel confinement. Proc. Natl Acad. Sci. USA 101, 17340–17344 (2004).

    ADS  Article  Google Scholar 

  27. Barbero, G., Madhusudana, N. V., Palierne, J. F. & Durand, G. Optical determination of large distortion surface anchoring torques in a nematic liquid-crystal. Phys. Lett. A 103, 385–388 (1984).

    ADS  Article  Google Scholar 

  28. McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    Article  Google Scholar 

  29. Wunderlich, B. K., Klessinger, U. A. & Bausch, A. R. Diffusive spreading of time-dependent pressures in elastic microfluidic devices. Lab Chip 10, 1025–1029 (2010).

    Article  Google Scholar 

  30. Boamfa, M. I., Lazarenko, S. V., Vermolen, E. C. M., Kirilyuk, A. & Racing, T. Magnetic field alignment of liquid crystals for fast display applications. Adv. Mater. 17, 610–614 (2005).

    Article  Google Scholar 

  31. Shamai, R. & Levy, U. On chip tunable micro ring resonator actuated by electrowetting. Opt. Express 17, 1116–1125 (2009).

    ADS  Article  Google Scholar 

  32. Hoshino, K. & Shimoyama, I. Analysis of elastic micro optical components under large deformation. J. Micromech. Microeng. 13, 149–154 (2003).

    ADS  Article  Google Scholar 

  33. Qin, Y., Wang, X. & Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2009).

    ADS  Article  Google Scholar 

  34. Woltman, S. J., Jay, G. D. & Crawford, G. P. Liquid-crystal materials find a new order in biomedical applications. Nature Mater. 6, 929–938 (2007).

    ADS  Article  Google Scholar 

  35. Yu, L., Li, C. M., Zhou, Q. & Luong, J. H. T. Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay. Bioconj. Chem. 18, 281–287 (2007).

    Article  Google Scholar 

  36. Pasechnik, S. V., Chigrinov, V. G., Shmeliova, D. V., Tsvetkov, V. A. & Voronov, A. N. Anisotropic shear viscosity in nematic liquid crystals: new optical measurement method. Liquid Cryst. 31, 585–592 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J.-F. Molinari, N. Stergiopoulos and S. Maerkl for fruitful discussions on time-domain elastomer modelling methods, oscillatory flows of viscous liquids and microfluidic flow architectures, respectively.

Author information

Authors and Affiliations

Authors

Contributions

A.E.V. and D.P. conceived the peristaltic strategy. J.G.C. performed the experimental and numerical flow characterization and conoscopic measurements. A.E.V. designed the experiments, built the experimental apparatus, and performed the optical experiments, calculations and microfabrication. L.D.S. supplied background in liquid crystals and materials. A.E.V. and D.P. wrote the paper.

Corresponding author

Correspondence to A. E. Vasdekis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 483 kb)

Supplementary Movie

Supplementary Movie (AVI 1732 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cuennet, J., Vasdekis, A., De Sio, L. et al. Optofluidic modulator based on peristaltic nematogen microflows. Nature Photon 5, 234–238 (2011). https://doi.org/10.1038/nphoton.2011.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.18

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing