Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant broadband nonlinear optical absorption response in dispersed graphene single sheets

Abstract

Under intense laser excitation, thin films and suspensions of graphite and its nanostructure, including carbon black, nanotubes, few-layer graphenes and graphene oxides, exhibit induced transparency due to saturable absorption. This switches to optical limiting only at very high fluences when induced breakdown gives rise to microbubbles and microplasmas that causes nonlinear scattering. Here, we show that dispersed graphenes, in contrast, can exhibit broadband nonlinear optical absorption at fluences well below this damage threshold with a strong matrix effect. We obtained, for nanosecond visible and near-infrared pulses, a new benchmark for optical energy-limiting onset of 10 mJ cm−2 for a linear transmittance of 70%, with excellent output clamping in both heavy-atom solvents and polymer film matrices. Nanosecond pump–probe spectroscopy in chlorobenzene reveals that the nanographene domains switch from the usual broadband photo-induced bleaching to a novel reverse saturable absorption mechanism with increasing excitation densities across this threshold.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic structure of a functionalized sub-GOx sheet.
Figure 2: Linear and nonlinear transmittance characteristics of sub-GOx/PC film.
Figure 3: Strong solvent/matrix effect on the nonlinear optical properties of dispersed sub-GOx.
Figure 4: Nonlinear transmittance characteristics of ultrasonically exfoliated graphene, sub-GOx and heavily oxidized GOx.
Figure 5: Normalized transient transmittance ΔT/T spectra as a function of pump–probe delay for sub-GOx dispersed in chlorobenzene at a pump wavelength of 532 nm.
Figure 6: Schematic outlining new optical-induced absorption mechanisms.

References

  1. 1

    Tutt, L. W. & Boggess, T. F. A review of optical limiting mechanisms and devices using organics, fullerences, semiconductors and other materials. Prog. Quantum Electron. 17, 299–338 (1993).

    ADS  Article  Google Scholar 

  2. 2

    Sun, Y. P. & Riggs, J. E. Organic and inorganic optical limiting materials: from fullerenes to nanoparticles. Int. Rev. Phys. Chem. 18, 43–90 (1999).

    Article  Google Scholar 

  3. 3

    Mansour, K., Soileau, M. J. & Van Stryland, E. W. Nonlinear optical properties of carbon-black suspensions (ink). J. Opt. Soc. Am. B 9, 1100–1109 (1992).

    ADS  Article  Google Scholar 

  4. 4

    Nashold, K. M. & Walter, D. P. Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions. J. Opt. Soc. Am. B 12, 1228–1237 (1995).

    ADS  Article  Google Scholar 

  5. 5

    Chen, P. et al. Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 82, 2548–2551 (1999).

    ADS  Article  Google Scholar 

  6. 6

    Vivien, L. et al. Single-wall carbon nanotubes for optical limiting. Chem. Phys. Lett. 307, 317–319 (1999).

    ADS  Article  Google Scholar 

  7. 7

    Riggs, J. E., Walker, D. B., Carroll, D. L. & Sun, Y. P. Optical limiting properties of suspended and solubilized carbon nanotubes. J. Phys. Chem. B 104, 7071–7076 (2000).

    Article  Google Scholar 

  8. 8

    Brandelik, D. et al. Nonlinear optical properties of buckminsterfullerene solutions. Mater. Res. Soc. Symp. Proc. 247, 361–366 (1992).

    Article  Google Scholar 

  9. 9

    Tutt, L. W. & Kost, A. Optical limiting performance of C60 and C70 solutions. Nature 356, 225–226 (1992).

    ADS  Article  Google Scholar 

  10. 10

    Perry, J. W. et al. Organic optical limiter with a strong nonlinear absorptive response. Science 273, 1533–1536 (1996).

    ADS  Article  Google Scholar 

  11. 11

    de la Torre, G., Vázquez, P., Agulló-López, F. & Torres, T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev. 104, 3723–3750 (2004).

    Article  Google Scholar 

  12. 12

    Senge, M. O. et al. Nonlinear optical properties of porphyrins. Adv. Mater. 19, 2737–2774 (2007).

    Article  Google Scholar 

  13. 13

    Vivien, L. et al. Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon-nanotube suspensions. J. Opt. Soc. Am. B 19, 208–214 (2002).

    ADS  Article  Google Scholar 

  14. 14

    Wang, J. et al. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 21, 2430–2435 (2009).

    Article  Google Scholar 

  15. 15

    Zhao, B. et al. Nonlinear optical transmission of nanographene and its composites. J. Phys. Chem. C 114, 12517–12523 (2010).

    Article  Google Scholar 

  16. 16

    Feng, M., Zhan, H. & Chen, Y. Nonlinear optical and optical limiting properties of graphene families. Appl. Phys. Lett. 96, 033107 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Wang, S. et al. Band-like transport in surface-functionalised highly solution-processable graphene nanosheets. Adv. Mater. 20, 3440–3446 (2008).

    Article  Google Scholar 

  18. 18

    Lerf, A., He, H., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    Article  Google Scholar 

  19. 19

    Szabó, T. et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006).

    Article  Google Scholar 

  20. 20

    Cai, W. W. et al. Synthesis and solid-state NMR structural characterization of C13-labeled graphite oxide. Science 321, 1815–1817 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Gao, W., Alemany, L. B., Ci, L. & Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nature Chem. 1, 403–408 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Chua, L.-L. et al. Deoxidation of graphene oxide nanosheets to extended graphenites by ‘unzipping’ elimination. J. Chem. Phys. 129, 114702 (2008).

    ADS  Article  Google Scholar 

  23. 23

    Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    ADS  Article  Google Scholar 

  24. 24

    Schniepp, H. C. et al. Functionalised single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).

    Article  Google Scholar 

  25. 25

    Eda, G. & Chhowalla, M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010).

    Article  Google Scholar 

  26. 26

    Sun, X. et al. Broadband optical limiting with multiwalled carbon nanotubes. Appl. Phys. Lett. 73, 3632–3634 (1998).

    ADS  Article  Google Scholar 

  27. 27

    Reitze, D. H., Wang, X., Ahn, H. & Downer, M. C. Femtosecond laser melting of graphite. Phys. Rev. B 40, 11986–11989 (1989).

    ADS  Article  Google Scholar 

  28. 28

    Seibert, K. et al. Femtosecond carrier dynamics in graphite. Phys. Rev. B 42, 2842–2851 (1990).

    ADS  Article  Google Scholar 

  29. 29

    Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    Article  Google Scholar 

  31. 31

    Kumar, S. et al. Femtosecond carrier dynamics and saturable absorption in graphene suspensions. Appl. Phys. Lett. 95, 191911 (2009).

    ADS  Article  Google Scholar 

  32. 32

    Turro, N. J. Modern Molecular Photochemistry (University Science Books, 1991).

    Google Scholar 

  33. 33

    Zhuo, J. M. et al. Direct evidence for delocalisation of charge carriers at the Fermi level in a doped conducting polymer. Phys. Rev. Lett. 100, 186601 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Zhou, M. et al. The role of delta-doped interfaces for ohmic contacts to organic semiconductors. Phys. Rev. Lett. 103, 036601 (2009).

    ADS  Article  Google Scholar 

  35. 35

    Clark, J., Silva, C., Friend, R. H. & Spano, F. C. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 98, 206406 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

L.L.C. acknowledges the Ministry of Education Academic Research Fund for funding. P.K.H.H. acknowledges the Defence Science and Technology Agency for Temasek Young Investigator's award. R.H.F. acknowledges the Tan Chin Tuan Foundation for National University of Singapore Centennial Professorship. J.C. acknowledges the Royal Society for a Dorothy Hodgkin fellowship.

Author information

Affiliations

Authors

Contributions

G.K.L. and L.L.C conceived the idea, performed the experiment and analysed the data. J.C. performed the experiments and analysed the data. R.H.F and P.K.H.H. analysed the data. Z.L.C. and R.G.S.G. synthesized and characterized the graphene materials. W.H.N and H.W.T. contributed to Z-scan measurement setup. G.K.L, J.C., R.H.F., P.K.H.H. and L.L.C. contributed to writing the paper.

Corresponding authors

Correspondence to Geok-Kieng Lim or Lay-Lay Chua.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1665 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lim, GK., Chen, ZL., Clark, J. et al. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature Photon 5, 554–560 (2011). https://doi.org/10.1038/nphoton.2011.177

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing