Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption

Subjects

A Publisher Correction to this article was published on 03 December 2021

This article has been updated

Abstract

Identifying strong and fast nonlinearities for today's photonic applications is an ongoing effort1. Materials2,3,4,5 and devices6,7,8,9 are typically sought to achieve increasing nonlinear interactions. We report large enhancement of two-photon absorption through intrinsic resonances using extremely non-degenerate photon pairs. We experimentally demonstrate two-photon absorption enhancements by factors of 100–1,000 over degenerate two-photon absorption in direct-bandgap semiconductors. This enables gated detection of sub-bandgap and sub-100 pJ mid-infrared radiation using large-bandgap detectors at room temperature. Detection characteristics are comparable in performance to liquid-nitrogen-cooled HgCdTe (MCT) detectors. The temporal resolution of this gated detection by two-photon absorption is determined by the gating pulse duration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mid-IR detection using a UV photodiode.
Figure 2: Extreme ND-2PA in semiconductors.

Similar content being viewed by others

Change history

References

  1. Haque, S. A. & Nelson, J. Toward organic all-optical switching. Science 327, 1466–1467 (2010).

    Article  ADS  Google Scholar 

  2. Yumoto, J. et al. Enhancement of optical nonlinearity of heavy‐metal oxide glasses by replacing lead and bismuth with thallium. Appl. Phys. Lett. 63, 2630–2632 (1993).

    Article  ADS  Google Scholar 

  3. Sasaki, F., Kobayashi, S. & Haraichi, S. Enhancement of the optical nonlinearity in pseudoisocyanine J aggregates embedded in distributed feedback microcavities. Appl. Phys. Lett. 81, 391–393 (2002).

    Article  ADS  Google Scholar 

  4. Soljačić, M. & Joannopoulos, J. D. Enhancement of non-linear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  5. Hales, J. M. et al. Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit. Science 327, 1485–1488 (2010).

    Article  ADS  Google Scholar 

  6. Genevet, P. et al. Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett. 10, 4880–4883 (2010).

    Article  ADS  Google Scholar 

  7. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  8. Capasso, F., Sirtori, C. & Cho, A. Y. Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared. IEEE J. Quantum Electron. 30, 1313–1326 (1994).

    Article  ADS  Google Scholar 

  9. Paiella, R. et al. Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities. Science 290, 1739–1742 (2000).

    Article  ADS  Google Scholar 

  10. Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic crystal nanocavity. Nature Photon. 1, 49–52 (2007).

    Article  ADS  Google Scholar 

  11. Christodoulides, D., Khoo, I. C., Salamo, G. J., Stegeman, G. I. & Van Straland, E. W. Nonlinear refraction and absorption: mechanisms and magnitudes. Adv. Opt. Photon. 2, 60–200 (2010).

    Article  Google Scholar 

  12. Said, A. A. et al. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B 9, 405–414 (1992).

    Article  ADS  Google Scholar 

  13. Hutchings, D. C. & Van Stryland, E. W. Nondegenerate two-photon absorption in zinc blende semiconductors. J. Opt. Soc. Am. B 9, 2065–2074 (1992).

    Article  ADS  Google Scholar 

  14. Sheik-Bahae, M., Wang, J., DeSalvo, R., Hagan, D. J. & Van Styland, E. W. Measurement of nondegenerate nonlinearities using a two-color z scan. Opt. Lett. 17, 258–260 (1992).

    Article  ADS  Google Scholar 

  15. Sheik-Bahae, M., Hutchings, D. C., Hagan, D. J. & Van Stryland, E. W. Dispersion of bound electronic nonlinear refraction in solids. IEEE J. Quantum Electron. 27, 1296–1309 (1991).

    Article  ADS  Google Scholar 

  16. Wherrett, B. S. Scaling rules for multiphoton interband absorption in semiconductors. J. Opt. Soc. Am. B 1, 67–72 (1984).

    Article  ADS  Google Scholar 

  17. Olszak, P. D. et al. Spectral and temperature dependence of two-photon and free-carrier absorption in InSb. Phys. Rev. B 82, 235207 (2010).

    Article  ADS  Google Scholar 

  18. Hales, J. M. et al. Resonant enhancement of two-photon absorption in substituted fluorine molecules. J. Chem. Phys. 121, 3152–3160 (2004).

    Article  ADS  Google Scholar 

  19. Pati, S. K., Marks, T. J. & Ratner, M. A. Conformationally tuned large two-photon absorption cross sections in simple molecular chromophores. J. Am. Chem. Soc. 123, 7287–7291 (2001).

    Article  Google Scholar 

  20. Kogej, T. et al. Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores. Chem. Phys. Lett. 298, 1–6 (1998).

    Article  ADS  Google Scholar 

  21. Kleinman, D. A. & Boyd, G. D. Infrared detection by optical mixing. J. Appl. Phys. 40, 546–566 (1969).

    Article  ADS  Google Scholar 

  22. Gurski, T. R., Epps, H. W. & Maran, S. P. Upconversion of broadband infrared spectra. Appl. Opt. 17, 1238–1242 (1978).

    Article  ADS  Google Scholar 

  23. Watson, E. A. & Morris, G. M. Comparison of infrared upconversion methods for photon-limited imaging. J. Appl. Phys. 67, 6075–6084 (1990).

    Article  ADS  Google Scholar 

  24. Hadfield, R. H. Single-photon detectors for optical quantum information applications, Nature Photon. 3, 696–705 (2009).

    Article  ADS  Google Scholar 

  25. Gu, X. et al. Temporal and spectral control of single-photon frequency upconversion for pulsed radiation, Appl. Phys. Lett. 96, 131111 (2010).

    Article  ADS  Google Scholar 

  26. Thew, R. T., Zbinden, H. & Gisin, N. Tunable upconversion photon detector. Appl. Phys. Lett. 93, 071104 (2008).

    Article  ADS  Google Scholar 

  27. Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953).

    Article  ADS  Google Scholar 

  28. Wu, J. & Luo, F. Ultrafast femtosecond all-optical modulation through nondegenerate two-photon absorption in silicon-on-insulator waveguides. J. Russian Laser Res. 29, 490–496 (2008).

    Article  Google Scholar 

  29. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  30. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photon. 4, 535–544 (2010).

    Article  ADS  Google Scholar 

  31. Apiratikul, P. & Murphy, T. E. Background-suppressed ultrafast optical sampling using nondegenerate two-photon absorption in a GaAs photodiode. IEEE Photon. Technol. Lett. 22, 212–214 (2010).

    Article  ADS  Google Scholar 

  32. Boitier, F., Dherbecourt, J. B., Godard, A. & Rosencher, E. Infrared quantum counting by nondegenerate two photon conductivity in GaAs. Appl. Phys. Lett. 94, 081112 (2009).

    Article  ADS  Google Scholar 

  33. Hayat, A., Ginzburg, P. & Orenstein, M. Infrared single-photon detection by two-photon absorption in silicon. Phys. Rev. B 77, 125219 (2008).

    Article  ADS  Google Scholar 

  34. Hayat, A., Ginzburg, P. & Orenstein, M. Observation of two-photon emission from semiconductors. Nature Photon. 2, 238–241 (2008).

    Article  Google Scholar 

  35. Delfyett, P. J. Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications. J. Lightwave Technol. 24, 2701–2719 (2006).

    Article  ADS  Google Scholar 

  36. Chow, P. P. et al. Group III—nitride materials for ultraviolet detection applications. SPIE: Optoelectronics Conference Proceedings, 3948–32 (2000).

  37. Pugh, S. K., Dugdale, D. J., Brand, S. & Abram, R. A. Electronic structure calculations on nitride semiconductors. Semicond. Sci. Technol. 14, 23–31 (1999).

    Article  ADS  Google Scholar 

  38. Bass, M., Li, G. & Van Stryland, E. W. Handbook of Optics: Volume 4, Optical Properties of Materials, Nonlinear Optics, Quantum Optics 3rd edn (McGraw-Hill, 2010).

    Google Scholar 

  39. Sheik-Bahae, M., Hutchings, D. C., Hagan, D. J. & Van Stryland, E. W. Dispersion of bound electronic nonlinear refraction in solids. IEEE J. Quantum Electron. 27, 1296–1309 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Army Research Office (grant no. 50372-CH-MUR) and the DARPA ZOE program (grant no. W31R4Q-09-1-0012).

Author information

Authors and Affiliations

Authors

Contributions

D.A.F., C.M.C., L.A.P. and S.W. conceived and performed the experiments. C.M.C and D.A.F. modelled the data and performed the theoretical analysis. M.M. designed and implemented the detection system. D.J.H. and E.W.V.S. suggested the basic concept of enhanced ND-2PA for experiments and applications. All authors contributed to the discussion of the results and writing the paper.

Corresponding author

Correspondence to Eric W. Van Stryland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishman, D., Cirloganu, C., Webster, S. et al. Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nature Photon 5, 561–565 (2011). https://doi.org/10.1038/nphoton.2011.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing