Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The photonic integration of non-solid media using optofluidics

Abstract

Photonics has long been used to study non-solid materials such as liquids, gases and plasmas, but these fluidic media have traditionally not comprised a functional part of the photonic device or system. The emerging field of optofluidics seeks to create new ways of uniting solid and non-solid materials in a single photonic system whose optical properties are typically defined by the fluidic component. This Review summarizes the current state of optofluidics from a photonics perspective. First, we describe a new class of photonic elements based on the combination of fluidic media and integrated optical structures. We then discuss the applications of optofluidic principles to particle sensing and manipulation in fluids, and finally assess current challenges and potential directions for future developments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Optofluidic dye lasers.
Figure 2: Optofluidic light routing and shaping.
Figure 3: Optofluidic filter structures for light control.
Figure 4: Optofluidic particle manipulation.

References

  1. Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    ADS  Google Scholar 

  2. Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: A new river of light. Nature Photon. 1, 106–114 (2007).

    ADS  Google Scholar 

  3. Hawkins, A. R. & Schmidt, H. (eds) Handbook of Optofluidics (CRC, 2010).

    Google Scholar 

  4. Fainman, Y., Lee, L. P., Psaltis, D. & Yang, C. (eds) Optofluidics: Fundamentals, Devices and Applications (McGraw Hill, 2009).

    Google Scholar 

  5. Payne, D. N. & Gambling, W. A. New low-loss liquid-core fibre waveguide. Electron. Lett. 8, 374–376 (1972).

    Google Scholar 

  6. Liu, G. L., Kim, J., Lu, Y. & Lee, L. P. Optofluidic control via photothermal nanoparticles. Nature Mater. 5, 27–32 (2006).

    ADS  Google Scholar 

  7. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang X. Y. & Ingber D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Google Scholar 

  8. Squires, T. M. & Quake, S. R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    ADS  Google Scholar 

  9. Li, Z., Zhang, Z., Scherer, A. & Psaltis, D. Mechanically tunable optofluidic distributed feedback dye laser. Opt. Express 14, 10494–10499 (2006).

    ADS  Google Scholar 

  10. Song, W. & Psaltis, D. Pneumatically tunable optofluidic dye laser. Appl. Phys. Lett. 96, 081101 (2010).

    ADS  Google Scholar 

  11. Siegman, A. E. Lasers (University Science Books, 1986).

    Google Scholar 

  12. Helbo, B., Kristensen, A. & Menon, A. A micro-cavity fluidic dye laser. J. Micromech. Microeng. 13, 307–311 (2003).

    ADS  Google Scholar 

  13. Li, Z., Zhang, Z., Scherer, A. & Psaltis, D. Mechanically tunable optofluidic distributed feedback dye laser. Opt. Express 6, 10494–10499 (2006).

    Google Scholar 

  14. Zhu, H. Y. et al. Analysis of biomolecule detection with optofluidic ring resonator sensors. Opt. Express 15, 9139–9146 (2007).

    ADS  Google Scholar 

  15. Shopova, S. I., Zhou, H. Y., Fan, X. D. & Zhang, P. Optofluidic ring resonator based dye laser. Appl. Phys. Lett. 90, 221101 (2007).

    ADS  Google Scholar 

  16. Sun, Y., Shopova, S. I., Wu, C., Arnold, S. & Fan, X. Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc. Natl Acad. Sci. USA 107, 16039–16042 (2010).

    ADS  Google Scholar 

  17. Tang, S. K. Y. et al. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9, 2767–2771 (2009).

    Google Scholar 

  18. Hunsperger, R. G. Integrated Optics: Theory and Technology 6th edn (Springer, 2002).

    Google Scholar 

  19. Takiguchi, H., Odake, T., Ozaki, M., Umemura, T. & Tsunoda, K. Liquid/liquid optical waveguides using sheath flow as a new tool for liquid/liquid interfacial measurements. Appl. Spectrosc. 57, 1039–1041 (2003).

    ADS  Google Scholar 

  20. Wolfe, D. B. et al. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl Acad. Sci. USA 101, 12434–12438 (2004).

    ADS  Google Scholar 

  21. Lim, J., Kim, S., Choi, J. & Yang, S. Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources. Lab Chip 8, 1580–1585 (2008).

    Google Scholar 

  22. Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructures. Opt. Lett. 29, 1209–1211 (2004).

    ADS  Google Scholar 

  23. Xu, Q., Almeida, V. R., Panepucci, R. R. & Lipson, M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29, 1626–1628 (2004).

    ADS  Google Scholar 

  24. Barrios, C. A. et al. Slot-waveguide biochemical sensor. Opt. Lett. 32, 3080–3082 (2007).

    ADS  Google Scholar 

  25. Bernini, R., Campopiano, S., Zeni, L. & Sarro, P. M. ARROW optical waveguides based sensors. Sens. Actuat. B 100, 143–146 (2004).

    Google Scholar 

  26. Schmidt, H., Yin, D., Barber, J. P. & Hawkins, A. R. Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids. IEEE J. Sel. Top. Quant. Electron. 11, 519–527 (2005).

    ADS  Google Scholar 

  27. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Molding the Flow of Light (Princeton Univ., 1995).

    MATH  Google Scholar 

  28. Russell, P. Photonic crystal fiber. Science 299, 358–362 (2003).

    ADS  Google Scholar 

  29. Antonopoulos, G. et al. Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling. Opt. Express 14, 3000–3006 (2006).

    ADS  Google Scholar 

  30. Risk, W. P., Kim, H. C., Miller, R. D., Temkin, H. & Gangopadhyay, S. Optical waveguides with an aqueous core and a low-index nanoporous cladding. Opt. Express 12, 6446–6455 (2004).

    ADS  Google Scholar 

  31. Gopalakrishnan, N. et al. UV patterned nanoporous solid-liquid core waveguides. Opt. Express 18, 12903–12908 (2010).

    ADS  Google Scholar 

  32. Cho, S., Godin, J. & Lo, Y. Optofluidic waveguides in teflon-coated microfluidic channels. IEEE Photon. Tech. Lett. 21, 1057–1059 (2009).

    ADS  Google Scholar 

  33. Temelkuran, B., Hart, S. D., Benoit, G., Joannopoulos, J. D. & Fink, Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002).

    ADS  Google Scholar 

  34. Schmidt, O., Bassler, M., Kiesel, P., Johnson, N. M. & Doehler, G. H. Guiding light in fluids. Appl. Phys. Lett. 88, 151109 (2006).

    ADS  Google Scholar 

  35. Erickson, D., Rockwood, T., Emery, T., Scherer, A. & Psaltis, D. Nanofluidic tuning of photonic crystal circuits. Opt. Lett. 31, 59–61 (2006).

    ADS  Google Scholar 

  36. Lien, V., Berdichevsky, Y. & Lo, Y. A prealigned process of integrating optical waveguides with microfluidic devices. IEEE Photon. Tech. Lett. 16, 1525–1527 (2004).

    ADS  Google Scholar 

  37. Cran-McGreehin, S., Krauss, T. F. & Dholakia, K. Integrated monolithic optical manipulation. Lab Chip 6, 1122–1124 (2006).

    Google Scholar 

  38. Dongre, C. et al. Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip. Lab Chip 11, 679–683 (2011).

    Google Scholar 

  39. Sato, S. Applications of liquid crystals to variable-focusing lenses. Opt. Rev. 6, 471–485 (1999).

    Google Scholar 

  40. Godin, J., Lien, V. & Lo, Y. Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers. Appl. Phys. Lett. 89, 061106 (2006).

    ADS  Google Scholar 

  41. Grilli, S. et al. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates. Opt. Express 16, 8084–8093 (2008).

    ADS  Google Scholar 

  42. Chronis, N., Liu, G. L., Jeong, K. & Lee, L. P. Tunable liquid-filled microlens array integrated with microfluidic network. Opt. Express 11, 2370–2378 (2003).

    ADS  Google Scholar 

  43. Tang, S. K. Y., Stan, C. A. & Whitesides, G. M. Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. Lab Chip 8, 395–401 (2008).

    Google Scholar 

  44. Mao, X. et al. Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom. Lab Chip 9, 2050–2058 (2009).

    Google Scholar 

  45. Cui, X. et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl Acad. Sci. USA 105, 10670 (2008).

    ADS  Google Scholar 

  46. Khademhosseini, B. et al. Lensfree sensing on a micro-fluidic chip using plasmonic nano-apertures. Appl. Phys. Lett. 97, 221107 (2010).

    ADS  Google Scholar 

  47. Seo, S. et al. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 9, 777–787 (2009).

    Google Scholar 

  48. Cuennet, J. G., Vasdekis, A. E., De Sio, L. & Psaltis, D. Optofluidic modulator based on peristaltic nematogen microflows. Nature Photon. 5, 234–238 (2011).

    ADS  Google Scholar 

  49. Campbell, K. et al. A microfluidic 2x2 optical switch. Appl. Phys. Lett. 85, 6119–6121 (2004).

    ADS  Google Scholar 

  50. Lim, J., Urbanski, J. P., Thorsen, T. & Yang, S. Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch. Appl. Phys. Lett. 98, 044101 (2011).

    ADS  Google Scholar 

  51. Groisman, A. et al. Optofluidic 1x4 switch. Opt. Express 16, 13499–13508 (2008).

    ADS  Google Scholar 

  52. Testa, G., Huang, Y., Sarro, P. M., Zeni, L. & Bernini, R. High-visibility optofluidic Mach–Zehnder interferometer. Opt. Lett. 35, 1584–1586 (2010).

    ADS  Google Scholar 

  53. Mandal, S. & Erickson, D. Nanoscale optofluidic sensor arrays. Opt. Express 16, 1623–1631 (2008).

    ADS  Google Scholar 

  54. Little, B. E. et al. Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997).

    ADS  Google Scholar 

  55. Yang, A. J. H. & Erickson, D. Optofluidic ring resonator switch for optical particle transport. Lab Chip 10, 769–774 (2010).

    Google Scholar 

  56. Lin, S., Schonbrun, E. & Crozier, K. Optical manipulation with planar silicon microring resonators. Nano Lett. 10, 2408–2411 (2010).

    ADS  Google Scholar 

  57. Testa, G., Huang, Y., Sarro, P. M., Zeni, L. & Bernini, R. Integrated silicon optofluidic ring resonator. Appl. Phys. Lett. 97, 131110 (2010).

    ADS  Google Scholar 

  58. Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free single-molecule detection with optical microcavities. Science 317, 783–787 (2007).

    ADS  Google Scholar 

  59. Vollmer, F., Arnold, S. & Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl Acad. Sci. USA 105, 20701–20704 (2008).

    ADS  Google Scholar 

  60. Smith, C. L. et al. Reconfigurable microfluidic photonic crystal slab cavities. Opt. Express 16, 15887–15896 (2008).

    ADS  Google Scholar 

  61. Measor, P., Phillips, B. S., Chen, A., Hawkins, A. R. & Schmidt, H. Tailorable integrated optofluidic filters for biomolecular detection. Lab Chip 11, 899–904 (2011).

    Google Scholar 

  62. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Light in tiny holes. Nature 445, 39–46 (2007).

    Google Scholar 

  63. Eftekhari, F., Gordon, R., Ferreira, J., Brolo, A. G. & Sinton, D. Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays. Appl. Phys. Lett. 92, 253103 (2008).

    ADS  Google Scholar 

  64. Yanik, A. A., Huang, M., Artar, A., Chang, T. & Altug, H. Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl. Phys. Lett. 96, 021101 (2010).

    ADS  Google Scholar 

  65. Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys. 5, 915–919 (2009).

    ADS  Google Scholar 

  66. Lau, A. Y., Lee, L. P. & Chan, J. W. An integrated optofluidic platform for Raman-activated cell sorting. Lab Chip 8, 1116–1120 (2008).

    Google Scholar 

  67. Godin, J. et al. Microfluidics and photonics for bio-system-on-a-chip: A review of advancements in technology towards a microfluidic flow cytometry chip. J. Biophoton. 1, 355–376 (2008).

    Google Scholar 

  68. Wang, M. M. et al. Microfluidic sorting of mammalian cells by optical force switching. Nature Biotechnol. 23, 83–87 (2005).

    Google Scholar 

  69. Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl Acad. Sci. USA 94, 4853–4860 (2006).

    ADS  MATH  Google Scholar 

  70. Tanaka, T. & Yamamoto, S. Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode, channeled waveguide. Appl. Phys. Lett. 77, 3131–3133 (2000).

    ADS  Google Scholar 

  71. Grujic, K., Hellesø, O. G., Hole, J. P. & Wilkinson, J. S. Sorting of polystyrene microspheres using a Y-branched optical waveguide. Opt. Express 13, 1–7 (2005).

    ADS  Google Scholar 

  72. Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).

    ADS  Google Scholar 

  73. Benabid, F., Knight, J. C. & Russell, P. S. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express 10, 1195–1203 (2002).

    ADS  Google Scholar 

  74. Mandal, S. & Erickson, D. Optofluidic transport in liquid core waveguiding structures. Appl. Phys. Lett. 90, 184103 (2007).

    ADS  Google Scholar 

  75. Measor, P. et al. Hollow-core waveguide characterization by optically induced particle transport. Opt. Lett. 33, 672–674 (2008).

    ADS  Google Scholar 

  76. Kühn, S. et al. Loss-based optical trap for on-chip particle analysis. Lab Chip 9, 2212–2216 (2009).

    Google Scholar 

  77. Kühn, S. et al. Optofluidic particle concentration by a long-range dual-beam trap. Opt. Lett. 34, 2306–2308 (2009).

    ADS  Google Scholar 

  78. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 365–370 (2008).

    ADS  Google Scholar 

  79. MacDonald, M. P., Spalding, G. C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003).

    ADS  Google Scholar 

  80. Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

    ADS  Google Scholar 

  81. Kühn, S., Lunt, E. J., Philips, B. S., Hawkins, A. R. & Schmidt, H. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip. Lab Chip 10, 189–194 (2010).

    Google Scholar 

  82. Shamah, S. M. & Cunningham, B. T. Label-free cell-based assays using photonic crystal optical biosensors. Analyst 136, 1090–1102 (2011).

    ADS  Google Scholar 

  83. Schmidt, H. & Hawkins, A. R. Optofluidic waveguides: I. Concepts and implementations. Microfluid. Nanofluid. 4, 3–16 (2008).

    Google Scholar 

  84. Yin, D. et al. Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip 7, 1171–1175 (2007).

    Google Scholar 

  85. Measor, P. et al. On-chip surface-enhanced Raman scattering (SERS) detection using integrated liquid-core waveguides. Appl. Phys. Lett. 90, 211107 (2007).

    ADS  Google Scholar 

  86. Wang, M., Jing, N., Chou, I., Cote, G. L. & Kameoka, J. An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 7, 630–632 (2007).

    Google Scholar 

  87. Zhu, H., White, I. M., Suter, J. D., Zourob, M. & Fan, X. Opto-fluidic micro-ring resonator for sensitive label-free viral detection. Analyst 133, 356–360 (2008).

    ADS  Google Scholar 

  88. Rudenko, M. I. et al. Ultrasensitive phage analysis using fluorescence correlation spectroscopy on an optofluidic chip. Biosens. Bioelectron. 24, 3258–3263 (2009).

    Google Scholar 

  89. Yanik, A. A. et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 10, 4962–4969 (2010).

    ADS  MathSciNet  Google Scholar 

  90. Kiesel, P., Beck, M. & Johnson, N. Monitoring CD4 in whole blood with an opto-fluidic detector based on spatially modulated fluorescence emission. Cytometry 79A, 317–324 (2011).

    Google Scholar 

  91. Song, W. & Psaltis, D. Optofluidic pressure sensor based on interferometric imaging. Opt. Lett. 35, 3604–3606 (2010).

    ADS  Google Scholar 

  92. Sun, Y. et al. Rapid tandem-column micro-gas chromatography based on optofluidic ring resonators with multi-point on-column detection. Analyst 135, 165–171 (2010).

    ADS  Google Scholar 

  93. Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. S. J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002).

    ADS  Google Scholar 

  94. Ghosh, S. et al. Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber. Phys. Rev. Lett. 97, 023603 (2006).

    ADS  Google Scholar 

  95. Yang, W. et al. Atomic spectroscopy on a chip. Nature Photon. 1, 331–335 (2007).

    ADS  Google Scholar 

  96. Thapa, R. et al. Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber. Opt. Lett. 31, 2489–2491 (2006).

    ADS  Google Scholar 

  97. Fan, X. & White, I. M. Optofluidic microsystems for chemical and biological analysis. Nature Photon. 5, 591–597 10.1038/nphoton.2011.206 (2011).

    Article  ADS  Google Scholar 

  98. Wu, A., Wang, L., Jensen, E., Mathies, R. & Boser, B. Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 10, 519–521 (2010).

    Google Scholar 

  99. Chung, S., Park, W., Shin, S., Lee, S. & Kwon, S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nature Mater. 5, 581–587 (2008).

    ADS  Google Scholar 

  100. Park, S., Wu, T.-H., Chen, Y. & Chiou, P. Y. Pulse laser driven ultrafast droplet generation on demand. Lab Chip 11, 1010–1012 (2011).

    Google Scholar 

  101. Erickson, D., Sinton, D. & Psaltis, D. Optofluidics for energy applications. Nature Photon. 5, 583–590 10.1038/nphoton.2011.209 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Measor for assistance with the figures and acknowledge support by the W.M. Keck Center for Nanoscale Optofluidics at the University of California at Santa Cruz, the National Science Foundation under grants ECS-0528714 and ECS-0528730, and the National Institutes of Health under grants R01EB006097 and R21EB008802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, H., Hawkins, A. The photonic integration of non-solid media using optofluidics. Nature Photon 5, 598–604 (2011). https://doi.org/10.1038/nphoton.2011.163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing