Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonically tailored micropotentials for ultracold atoms

Abstract

Plasmonic near-fields can be structured with sub-optical wavelength resolution. This offers promising scenarios for trapping, guiding and manipulating cold atoms in plasmonically tailored dipole potentials, which could enable strong coupling between a single atom and a single plasmonic excitation. Here, we report on the interaction of Bose–Einstein condensates with the optical near-field above plasmonic micro- and submicrometre structures. At these structures, surface plasmon polaritons are excited by a laser in the Kretschmann configuration, giving rise to resonantly enhanced surface plasmons. We introduce a technique to measure the strength of optical near-fields by observing the reflection of cold atoms from the surface. In particular, the dependence of electromagnetic field enhancement on structure size is investigated. Furthermore, we show that the near-field induced potential landscape can be tailored to sub-micrometre dimensions by demonstrating matter–wave diffraction from a grating of plasmonic wires.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Fabricated gold structures and excitation of surface plasmons.
Figure 2: Potential barriers on plain surfaces.
Figure 3: Potential barriers on plasmonic micro- and submicrometre structures.
Figure 4: Dependence of maximum modulation depth on structure width.
Figure 5: Matter–wave diffraction from plasmonic nanostructures.

References

  1. 1

    Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).

    ADS  Article  Google Scholar 

  3. 3

    Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

    ADS  Article  Google Scholar 

  4. 4

    Ash, E. A. & Nicholls, G. Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972).

    ADS  Article  Google Scholar 

  5. 5

    Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995).

    ADS  Article  Google Scholar 

  7. 7

    Wang, H., Brandl, D. W., Le, F., Nordlander, P. & Halas, N. J. Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006).

    ADS  Article  Google Scholar 

  8. 8

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    ADS  Article  Google Scholar 

  9. 9

    Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).

    ADS  Article  Google Scholar 

  10. 10

    Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sens. Actuat. B 54, 3–15 (1999).

    Article  Google Scholar 

  11. 11

    Matveeva, E., Gryczyinski, Z., Gryczyinski, I., Malicka, J. & Lakovicz, J. R. Myoglobin immunoassay utilizing directional surface plasmon-coupled emission. Anal. Chem. 76, 6287–6292 (2004).

    Article  Google Scholar 

  12. 12

    Haes, A. J., Hall, W. P., Chang, L., Klein, W. L. & Van Duyne, R. P. A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease. Nano Lett. 4, 1029–1034 (2004).

    ADS  Article  Google Scholar 

  13. 13

    Jackson, J. B., Westcott, S. L., Hirsch, L. R., West, J. L. & Halas, N. J. Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl. Phys. Lett. 82, 257–259 (2003).

    ADS  Article  Google Scholar 

  14. 14

    Novotny, L. & Hafner, C. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E 50, 4094–4106 (1994).

    ADS  Article  Google Scholar 

  15. 15

    Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Zia, R. & Brongersma, M. L. Surface plasmon polariton analogue to Young's double-slit experiment. Nature Nanotech. 2, 426–429 (2007).

    ADS  Article  Google Scholar 

  17. 17

    Min, B. et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009).

    ADS  Article  Google Scholar 

  18. 18

    Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    ADS  Article  Google Scholar 

  19. 19

    Gather, M. C., Meerholz, K., Danz, N. & Leosson, K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photon. 4, 457–461 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    ADS  Article  Google Scholar 

  21. 21

    Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    ADS  Article  Google Scholar 

  22. 22

    Chang, D. E. et al. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 103, 123004 (2009).

    ADS  Article  Google Scholar 

  23. 23

    Murphy, B. & Hau, L. V. Electro-optical nanotraps for neutral atoms. Phys. Rev. Lett. 102, 033003 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Esslinger, T., Weidemüller, M., Hemmerich, A. & Hänsch, T. W. Surface-plasmon mirror for atoms. Opt. Lett. 18, 450–452 (1993).

    ADS  Article  Google Scholar 

  25. 25

    Feron, S. et al. Reflection of metastable neon atoms by a surface plasmon wave. Opt. Commun. 102, 83–88 (1993).

    ADS  Article  Google Scholar 

  26. 26

    Schneble, D., Hasuo, M., Anker, T., Pfau, T. & Mlynek, J. Detection of cold metastable atoms at a surface. Rev. Sci. Instrum. 74, 2685–2689 (2003).

    ADS  Article  Google Scholar 

  27. 27

    Gerlich, S. et al. A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules. Nature Phys. 3, 711–715 (2007).

    ADS  Article  Google Scholar 

  28. 28

    Fixler, J. B., Foster, G. T., McGuirk, J. M. & Kasevich, M. A. Atom interferometer measurement of the Newtonian constant of gravity. Science 315, 74–77 (2007).

    ADS  Article  Google Scholar 

  29. 29

    Müller, H., Peters, A. & Chu, S. A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926–929 (2010).

    ADS  Article  Google Scholar 

  30. 30

    Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).

    ADS  Article  Google Scholar 

  31. 31

    Günther, A., Kraft, S., Zimmermann, C. & Fortágh, J. Atom interferometer based on phase coherent splitting of Bose–Einstein condensates with an integrated magnetic grating. Phys. Rev. Lett. 98, 140403 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Bender, H., Courteille, P., Zimmermann, C. & Slama, S. Towards surface quantum optics with Bose–Einstein condensates in evanescent waves. Appl. Phys. B 96, 275–279 (2009).

    ADS  Article  Google Scholar 

  33. 33

    Kretschmann, E. & Raether, H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135–2136 (1968).

    ADS  Google Scholar 

  34. 34

    Sandoghdar, V., Sukenik, C. I., Hinds, E. A. & Haroche, S. Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68, 3432–3435 (1992).

    ADS  Article  Google Scholar 

  35. 35

    Shimizu, F. Specular reflection of very slow metastable neon atoms from a solid surface. Phys. Rev. Lett. 86, 987–990 (2001).

    ADS  Article  Google Scholar 

  36. 36

    Druzhinina, V. & DeKieviet, M. Experimental observation of quantum reflection far from threshold. Phys. Rev. Lett. 91, 193202 (2003).

    ADS  Article  Google Scholar 

  37. 37

    Pasquini, T. A. et al. Quantum reflection from a solid surface at normal incidence. Phys. Rev. Lett. 93, 223201 (2004).

    ADS  Article  Google Scholar 

  38. 38

    Obrecht, J. M. et al. Measurement of the temperature dependence of the Casimir–Polder force. Phys. Rev. Lett. 98, 063201 (2007).

    ADS  Article  Google Scholar 

  39. 39

    Bender, H., Courteille, Ph. W., Marzok, C., Zimmermann, C. & Slama, S. Direct measurement of intermediate-range Casimir–Polder potentials. Phys. Rev. Lett. 104, 083201 (2010).

    ADS  Article  Google Scholar 

  40. 40

    Zia, R., Selker, M. D. & Brongersma, M. L. Leaky and bound modes of surface plasmon waveguides. Phys. Rev. B 71, 165431 (2005).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

H.B., C.S., S.S. and C.Z. acknowledge financial support by the Deutsche Forschungsgemeinschaft within the European Collaborative Research program of the European Science Foundation. C.S. was supported by Carl-Zeiss Stiftung Baden-Württemberg. S.S. and C.S. benefited from an exchange of ideas with the European Science Foundation Research Network of New Trends and Applications of the Casimir Effects. M.F. acknowledges financial support by the European Social Fund and by the Ministry of Science, Research and the Arts Baden-Württemberg. M.F. would like to thank C. Schäfer for discussions on SU-8 and R. Löffler for exposing the mask used in the optical lithography step.

Author information

Affiliations

Authors

Contributions

S.S. designed and supervised the experiment, analysed the data and wrote the paper. H.B. and C.S. measured the data. M.F. fabricated the plasmonic structures and wrote Supplementary Section A. D.K. provided the nanofabrication lab. C.Z. provided the quantum optics lab. All authors discussed the results and commented on the manuscript at all stages.

Corresponding author

Correspondence to Sebastian Slama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 228 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stehle, C., Bender, H., Zimmermann, C. et al. Plasmonically tailored micropotentials for ultracold atoms. Nature Photon 5, 494–498 (2011). https://doi.org/10.1038/nphoton.2011.159

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing