Abstract
A photon carries k of momentum, so it may be anticipated that light will ‘push’ on any object standing in its path by means of the scattering force1,2,3. In the absence of an intensity gradient, using a light beam to pull a particle backwards is counter-intuitive. Here, we show that it is possible to realize a backward scattering force that pulls a particle all the way towards the source without an equilibrium point. The underlining physics is the maximization of forward scattering via interference of the radiation multipoles. We show explicitly that the necessary condition to realize a negative (pulling) optical force is the simultaneous excitation of multipoles in the particle, and if the projection of the total photon momentum along the propagation direction is small, an attractive optical force is possible. This possibility adds ‘pulling’ as an additional degree of freedom to optical micromanipulation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Reciprocating propagation of laser pulse intensity in free space
Communications Physics Open Access 04 May 2021
-
Plasmonic tweezers: for nanoscale optical trapping and beyond
Light: Science & Applications Open Access 17 March 2021
-
Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena
Light: Science & Applications Open Access 02 September 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Arlt, J., Garces-Chavez, V., Sibbett, W. & Dholakia, K. Optical micromanipulation using a Bessel light beam. Opt. Commun. 197, 239–245 (2001).
Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nature Photon. 2, 675–678 (2008).
Swartzlander, G. A. Jr, Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nature Photon. 5, 48–51 (2011).
Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).
Righini, M., Zelenina, A. S., Girard, C. & Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys. 3, 477–480 (2007).
Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 675–678 (2008).
Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R., Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys. 5, 915–919 (2009).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Ashkin, A. Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).
Novitsky, A. V. & Novitsky, D. V. Negative propagation of vector Bessel beams. J. Opt. Soc. Am. A 24, 2844–2849 (2007).
Shvedov, V. G. et al. Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).
Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).
Bouchal, Z. & Olivik, M. Non-diffractive vector Bessel beams. J. Mod. Opt. 42, 1555–1566 (1995).
Garces-Chavez, V., McGloin, D., Melville, H., Sibbett, W. & Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002).
McGloin, D. & Dholakia, K. Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005).
Cizmar, T., Kollarova, V., Bouchal, Z. & Zemanek, P. Sub-micron particle organization by self-imaging of non-diffracting beams. New J. Phys. 8, 43 (2006).
Marston, P. L. Scattering of a Bessel beam by a sphere. J. Acoust. Soc. Am. 121, 753–758 (2007).
Karasek, V., Cizmar, T., Brzobohaty, O. & Zemanek, P. Long-range one-dimensional longitudinal optical binding. Phys. Rev. Lett. 101, 143601 (2008).
Turunen, J. & Friberg, A. T. Progress in Optics Ch. 1 (Elsevier, 2009).
Mazilu, M., Stevenson, D. J., Moore, F. G. & Dholakia, K. Light beats the spread: ‘non-diffracting’ beams. Laser Photon. Rev. 4, 529–547 (2010).
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).
Dholakia, K. & Zemanek, P. Colloquium: Gripped by light: optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010).
Ng, J., Lin, Z. F., Chan, C. T. & Sheng, P. Photonic clusters formed by dielectric microspheres: Numerical simulations. Phys. Rev. B 72, 085130 (2005).
Radescu, E. E. & Vaman, G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E 65, 046609 (2002).
Barnett, S. M. & Loudon, R. On the electromagnetic force on a dielectric medium. J. Phys. B 39, 671–684 (2006).
Nieto-Vesperinas, M., Saenz, J. J., Gómez-Medina, R. & Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 18, 11428–11443 (2010).
Chaumet, P. C. & Rahmani, A. Electromagnetic force and torque on magnetic and negative index scatterers. Opt. Express 17, 2224–2234 (2009).
Kerker, M., Wang, D. S. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).
Nieto-Vesperinas, M., Gomez-Medina, R. & Saenz, J. J. Angle-suppressed scattering and optical forces on submicrometer dielectric particles. J. Opt. Soc. Am. A 28, 54–60 (2011).
Acknowledgements
The authors acknowledge support from Hong Kong's Research Grants Council (GRF grant no. 600308), from the National Natural Science Foundation of China (NSFC) (10774028) and the Chinese Ministry of Education (B06011). Computational resources were supported by the Shun Hing Education and Charity Fund.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this paper. J.C. discovered OPF and was responsible for the numerical simulations. J.N. was responsible for the physical interpretation and assisted in the mathematical derivation. Z.F.L. initiated the project and was responsible for most of the mathematical derivation and computer code development. C.T.C. oversaw and directed the whole project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 614 kb)
Rights and permissions
About this article
Cite this article
Chen, J., Ng, J., Lin, Z. et al. Optical pulling force. Nature Photon 5, 531–534 (2011). https://doi.org/10.1038/nphoton.2011.153
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2011.153
This article is cited by
-
Interaction and co-assembly of optical and topological solitons
Nature Photonics (2022)
-
Light-driven microdrones
Nature Nanotechnology (2022)
-
Microdrones soar by recoiling light
Nature Nanotechnology (2022)
-
Plasmonic tweezers: for nanoscale optical trapping and beyond
Light: Science & Applications (2021)
-
Reciprocating propagation of laser pulse intensity in free space
Communications Physics (2021)