Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mid-infrared HgTe colloidal quantum dot photodetectors

Abstract

Today's infrared imaging devices are based on bulk and quantum-confined epitaxial materials and would benefit greatly from higher operating temperatures and lower cost. Imaging chips based on colloidal quantum dot technology could offer a convenient lower-cost alternative, but, to date, the spectral range of operation of colloidal quantum dots has been limited. In this Letter, we report colloidal HgTe quantum dot photodetectors with a room-temperature photoresponse beyond 5 µm, the longest interband absorption wavelength reported so far for colloidal materials. The photodetectors are fabricated from colloidal solutions, which are then drop-cast as thin films on electrodes. Operation covering the important atmospheric mid-wavelength infrared transparency window between 3 and 5 µm is demonstrated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characterization of HgTe CQDs.
Figure 2: Characterization of HgTe QD thin films.
Figure 3: Fourier transforms of interferograms measured for the two devices under identical conditions with 0.3 V bias.
Figure 4: External quantum efficiency as a function of applied bias.
Figure 5: Noise and detectivity.

References

  1. 1

    Rogalski, A. Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002).

    ADS  Article  Google Scholar 

  2. 2

    Rogalski, A., Antoszewski, J. & Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009).

    ADS  Article  Google Scholar 

  3. 3

    Razeghi, M. Quantum dot infrared photodetectors. Technol. Quantum Dev. 395–423 (2010).

  4. 4

    Canedy, C. L. et al. Controlling dark current in type-II superlattice photodiodes. Infrared Phys. Technol. 52, 326–334 (2009).

    ADS  Article  Google Scholar 

  5. 5

    Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nature Nanotech. 5, 391–400 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    ADS  Article  Google Scholar 

  7. 7

    Kim, H. et al. Optoelectronic characteristics of close-packed HgTe nanoparticles in the infrared range. Solid State Commun. 137, 315–319 (2006).

    ADS  Article  Google Scholar 

  8. 8

    Böberl, M., Kovalenko, M. V., Gamerith, S., List, E. J. W. & Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 µm wavelengths. Adv. Mater. 19, 3574–3578 (2007).

    Article  Google Scholar 

  9. 9

    Rauch, T. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photon. 3, 332–336 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Guyot-Sionnest, P., Wehrenberg, B. & Yu, D. Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. J. Chem. Phys. 123, 074709 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Rogach, A. et al. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence. Adv. Mater. 11, 552–555 (1999).

    Article  Google Scholar 

  12. 12

    Rogach, A. et al. Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence. Phys. Status Solidi B 224, 153–158 (2001).

    ADS  Article  Google Scholar 

  13. 13

    Piepenbrock, M-O. M., Stirner, T., Kelly, S. M. & O'Neill, M. A low-temperature synthesis for organically soluble HgTe nanocrystals exhibiting near-infrared photoluminescence and quantum confinement. J. Am. Chem. Soc. 128, 7087–7090 (2006).

    Article  Google Scholar 

  14. 14

    Li, L. S. et al. Room temperature synthesis of HgTe nanocrystals. J. Colloid Interface Sci. 308, 254–257 (2007).

    ADS  Article  Google Scholar 

  15. 15

    Priyam, A., Blumling, D. E. & Knappenberger, K. L. Synthesis, characterization, and self-organization of dendrimer-encapsulated HgTe quantum dots. Langmuir 26, 10636–10644 (2010).

    Article  Google Scholar 

  16. 16

    Kovalenko, M. V. et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations. J. Am. Chem. Soc. 128, 3516–3517 (2006).

    Article  Google Scholar 

  17. 17

    Howes, P., Green, M., Johnston, C. & Crossley, A. Synthesis and shape control of mercury selenide (HgSe) quantum dots. J. Mater. Chem. 18, 3474–3480 (2008).

    Article  Google Scholar 

  18. 18

    Kuno, M. et al. Molecular clusters of binary and ternary mercury chalcogenides: colloidal synthesis, characterization, and optical spectra. J. Phys. Chem. B 107, 5758–5767 (2003).

    Article  Google Scholar 

  19. 19

    Chu, J. HgTe: lattice parameter, in (ed. Roessler, U.) SpringerMaterials — The Landolt-Börnstein Database (Springer-Verlag, 2008).

  20. 20

    Yu, D., Wang, C. & Guyot-Sionnest, P. n-Type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

    ADS  Article  Google Scholar 

  21. 21

    Guenzer, C. S. & Bienenstock, A. Temperature dependence of the HgTe band gap. Phys. Rev. B 8, 4655–4667 (1973).

    ADS  Article  Google Scholar 

  22. 22

    Dereniak, E. L. & Boreman, G. D. Infrared Detectors and Systems (Wiley-Interscience, 1996).

  23. 23

    Rosencher, E. & Vinter, B. Optoelectronics (Cambridge Univ. Press, 2002).

  24. 24

    Hooge, F. N. 1/f Noise Sources. NATO Science Series Vol. 151, 3–10 (Kluwer Academic Publishers, 2004).

    Google Scholar 

  25. 25

    Pourret, A., Guyot-Sionnest, P. & Elam, J. W. Atomic layer deposition of ZnO in quantum dot thin films. Adv. Mater. 21, 232–235 (2009).

    Article  Google Scholar 

  26. 26

    Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

    ADS  Article  Google Scholar 

  27. 27

    Scofield, J. H. AC method for measuring low-frequency resistance fluctuation spectra. Rev. Sci. Instrum. 58, 985–993 (1987).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Science Foundation (NSF; grant DMR-070626) and by the Department of Energy (grant DE-FG02-06ER46326). The authors made use of shared facilities supported by the NSF MRSEC Program (DMR-0820054). E.L. acknowledges the Ecole Polytechnique, Palaiseau, France, for a postdoctoral fellowship.

Author information

Affiliations

Authors

Contributions

S.K. made the materials and initiated photoconductivity measurements. E.L. studied the thermal-dependent properties. V.B. built the interferometer. P.G.S. guided the work and contributed, with S.K. and E.L., to writing the manuscript.

Corresponding author

Correspondence to Philippe Guyot-Sionnest.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 483 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keuleyan, S., Lhuillier, E., Brajuskovic, V. et al. Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photon 5, 489–493 (2011). https://doi.org/10.1038/nphoton.2011.142

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing