Full-colour quantum dot displays fabricated by transfer printing


Light-emitting diodes with quantum dot luminophores show promise in the development of next-generation displays, because quantum dot luminophores demonstrate high quantum yields, extremely narrow emission, spectral tunability and high stability, among other beneficial characteristics. However, the inability to achieve size-selective quantum dot patterning by conventional methods hinders the realization of full-colour quantum dot displays. Here, we report the first demonstration of a large-area, full-colour quantum dot display, including in flexible form, using optimized quantum dot films, and with control of the nano-interfaces and carrier behaviour. Printed quantum dot films exhibit excellent morphology, well-ordered quantum dot structure and clearly defined interfaces. These characteristics are achieved through the solvent-free transfer of quantum dot films and the compact structure of the quantum dot networks. Significant enhancements in charge transport/balance in the quantum dot layer improve electroluminescent performance. A method using plasmonic coupling is also suggested to further enhance luminous efficiency. The results suggest routes towards creating large-scale optoelectronic devices in displays, solid-state lighting and photovoltaics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic illustration of solvent-free transfer printing.
Figure 2: Influence of peeling velocity on pick-up yield under different pressures.
Figure 3: Comparison of QD film morphology.
Figure 4: Characteristics of transfer-printed QD device.
Figure 5: Full-colour QD display and its flexible form.
Figure 6: Electroluminescent emission from transfer-printed RGB QD films on back-plane pixel arrays.


  1. 1

    Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    ADS  Article  Google Scholar 

  2. 2

    Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    ADS  Article  Google Scholar 

  3. 3

    Tessler, N., Medvedev, V., Kazes, M., Kan, S. & Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002).

    ADS  Article  Google Scholar 

  4. 4

    Zhao, J. et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 6, 463–467 (2006).

    ADS  Article  Google Scholar 

  5. 5

    Caruge, J. M., Halpert, J. E., Wood, V., Bulović, V. & Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photon. 2, 247–250 (2008).

    Article  Google Scholar 

  6. 6

    Anikeeva, P. O., Halpert, J. E., Bawende, M. G. & Bulović, V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532–2536 (2009).

    ADS  Article  Google Scholar 

  7. 7

    Norris, D. J., Efros, A. L., Rosen, M. & Bawendi, M. G. Size dependence of exciton fine structure in CdSe quantum dots. Phys. Rev. B 53, 16347–16354 (1996).

    ADS  Article  Google Scholar 

  8. 8

    Sargent, E. H. Infrared photovoltaics made by solution processing. Nature Photon. 3, 325–331 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Cho, K.-S. et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nature Photon. 3, 341–345 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Wood, V. et al. Inkjet-printed quantum dot–polymer composites for full-color ac-driven displays. Adv. Mater. 21, 2151–2155 (2009).

    Article  Google Scholar 

  11. 11

    Kim, L. et al. Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Yu, K. & Han, Y. A stable PEO-tethered PDMS surface having controllable wetting property by a swelling–deswelling process. Soft Matter 2, 705–709 (2006).

    ADS  Article  Google Scholar 

  13. 13

    Cheng, W., Park, N., Walter, M. T., Hartman, M. R. & Luo, D. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nature Nanotech. 3, 682–690 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Arango, A. C., Oertel, D. C., Xu, Y., Bawendi, M. G. & Bulovic, V. Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer. Nano Lett. 9, 860–863 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Zhu, T. et al. Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots. Appl. Phys. Lett. 92, 023111 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Rizzo, A. et al. Hybrid light-emitting diodes from microcontact-printing double-transfer of colloidal semiconductor CdSe/ZnS quantum dots onto organic layers. Adv. Mater. 20, 1886–1891 (2008).

    Article  Google Scholar 

  17. 17

    Sun, Q. et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nature Photon. 1, 717–722 (2007).

    ADS  Article  Google Scholar 

  18. 18

    Coe-Sullivan, S., Steckel, J. S., Woo, W.-K., Bawendi, M. G. & Bulović, V. Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv. Func. Mater. 15, 1117–1124 (2005).

    Article  Google Scholar 

  19. 19

    Kim, D. H., Lee, H. S., Yang, H., Yang, L. & Cho, K. Tunable crystal nanostructures of pentacene thin films on gate dielectrics possessing surface-order control. Adv. Func. Mater. 18, 1363–1370 (2008).

    Article  Google Scholar 

  20. 20

    Kim, T.-H. et al. Printable, flexible, and stretchable forms of ultrananocrystalline diamond with applications in thermal management. Adv. Mater. 20, 2171–2176 (2008).

    Article  Google Scholar 

  21. 21

    Hsia, K. J. et al. Collapse of stamps for soft lithography due to interfacial adhesion. Appl. Phys. Lett. 86, 154106 (2005).

    ADS  Article  Google Scholar 

  22. 22

    Feng, X. et al. Competing fracture in kinetically controlled transfer printing. Langmuir 23, 12555–12560 (2007).

    Article  Google Scholar 

  23. 23

    Kim, T.-H. et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Appl. Phys. Lett. 94, 113502 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Yu, D., Wang, C. & Guyot-Sionnest, P. N-type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

    ADS  Article  Google Scholar 

  25. 25

    Jarosz, M. V., Porter, V. J., Fisher, B. R., Kastner, M. A. & Bawendi, M. G. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization energy. Phys. Rev. B 70, 195327 (2004).

    ADS  Article  Google Scholar 

  26. 26

    Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Niu, Y.-H. et al. Improved performance from multilayer quantum dot light-emitting diodes via thermal annealing of the quantum dot layer. Adv. Mater. 19, 3371–3376 (2007).

    Article  Google Scholar 

  28. 28

    Ruhstaller, B. et al. Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes. J. Appl. Phys. 89, 4575–4586 (2001).

    ADS  Article  Google Scholar 

  29. 29

    Munechika, K. et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. Nano Lett. 10, 2598–2603 (2010).

    ADS  Article  Google Scholar 

  30. 30

    Hwang, E., Smolyaninov, I. I. & Davis, C. C. Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces. Nano Lett. 10, 813–820 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Gontijo, I. et al. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B 60, 11564–11567 (1999).

    ADS  Article  Google Scholar 

  32. 32

    Neogi, A. et al. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 66, 153305 (2002).

    ADS  Article  Google Scholar 

  33. 33

    Kim, C.-J. et al. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Appl. Phys. Lett. 95, 252103 (2009).

    ADS  Article  Google Scholar 

  34. 34

    Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 33–38 (2006).

    ADS  Article  Google Scholar 

  35. 35

    Yan, X. et al. Microcontact printing of colloidal crystals. J. Am. Chem. Soc. 126, 10510–10511 (2004).

    Article  Google Scholar 

Download references


The authors thank I. Song and Y.N. Kwon for their help with technical measurement of quantum dot films, S.N. Cha for design support for the transfer printing machine, and K. Kim, J. Kim and K.-W. Kim for GISAXS measurements. Synchrotron GISAXS measurements at Pohang Accelerator Laboratory were supported by the Ministry of Science and Technology and the POSCO Company.

Author information




T.-H.K., K.-S.C., E.K.L., J.M.K. and B.L.C. designed the experiments. T.-H.K., K.-S.C., E.K.L., S.J.L., J.C., D.H.K., B.L.C. and Y.K. performed the experiments and analyses. G.A. and K.K. advised on the project, and J.M.K. supervised the project. J.W.K., J.-Y.K. and S.Y.L. contributed to technical support and design for the TFT backplane. T.-H.K., K.-S.C., G.A., Y.K., B.L.C. and J.M.K. wrote the paper.

Corresponding authors

Correspondence to Byoung Lyong Choi or Jong Min Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3290 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, TH., Cho, KS., Lee, E. et al. Full-colour quantum dot displays fabricated by transfer printing. Nature Photon 5, 176–182 (2011). https://doi.org/10.1038/nphoton.2011.12

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing