Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Zero phase delay in negative-refractive-index photonic crystal superlattices

Abstract

We show that optical beams propagating in path-averaged zero-index photonic crystal superlattices can have zero phase delay. The nanofabricated superlattices consist of alternating stacks of negative index photonic crystals and positive index homogeneous dielectric media, where the phase differences corresponding to consecutive primary unit cells are measured with integrated Mach-Zehnder interferometers. These measurements demonstrate that at path-averaged zero-index frequencies the phase accumulation remains constant and equal to zero despite the increase in the physical path length. We further demonstrate experimentally that these superlattice zero- bandgaps remain invariant to geometrical changes of the photonic structure and have a center frequency which is deterministically tunable. The properties of the zero- gap frequencies, optical phase, and effective refractive indices are well described by detailed experimental measurements, rigorous theoretical analysis, and comprehensive numerical simulations.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of an MZI and scanning electron microscopy (SEM) images of the fabricated device.
Figure 2: Band diagram of the PhC, verification of period-invariant zero- bandgaps, and influence of structural variations on transmission spectra.
Figure 3: MZ interferences with negative refraction PhCs.
Figure 4: Phase measurements.
Figure 5: FSR wavelength dependence corresponding to superlattices in Fig. 4.

References

  1. 1

    Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Usp. Fiz. Nauk 92, 517–526 (1964) [Sov. Phys. Usp. 10, 509–514 (1968)].

    Article  Google Scholar 

  2. 2

    Pendry, J. B. Time reversal and negative refraction. Science 322, 71–73 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    ADS  Article  Google Scholar 

  4. 4

    Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    ADS  Article  Google Scholar 

  5. 5

    Li, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31–37 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    ADS  Article  Google Scholar 

  8. 8

    Kundtz, N. & Smith, D. R. Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2010).

    ADS  Article  Google Scholar 

  9. 9

    Panoiu, N. C. & Osgood, R. M. Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials. Phys. Rev. E 68, 016611 (2003).

    ADS  Article  Google Scholar 

  10. 10

    Zhang, S. et al. Demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Liu, R. et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett. 100, 023903 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Tsakmakidis, K. L., Boardman, A. D. & Hess, O. ‘Trapped rainbow’ storage of light in metamaterials. Nature 450, 397–401 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Xi, S. et al. Experimental verification of reversed Cherenkov Radiation in left-handed metamaterial. Phys. Rev. Lett. 103, 194801 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007).

    ADS  Article  Google Scholar 

  16. 16

    Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Simultaneous negative phase and group velocity of light in a metamaterials. Science 312, 892–894 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Pollard, R. J. et al. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009).

    ADS  Article  Google Scholar 

  19. 19

    Ye, D., Qiao, S., Huangfu, J. & Ran, L. Experimental characterization of the dispersive behavior in a uniaxial metamaterial around plasma frequency. Opt. Express 18, 22631–22636 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Jin, Y., Zhang, P. & He, S. Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial. Phys. Rev. B 81, 085117 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Hsueh, W. J., Chen, C. T. & Chen, C. H. Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism. Phys. Rev. A 78, 013836 (2008).

    ADS  Article  Google Scholar 

  22. 22

    Xu, J.-P., Yang, Y.-P., Chen, H. & Zhu, S.-Y. Spontaneous decay process of a two-level atom embedded in a one-dimensional structure containing left-handed material. Phys. Rev. A 76, 063813 (2007).

    ADS  Article  Google Scholar 

  23. 23

    Chatterjee, R. et al. Achieving subdiffraction imaging through bound surface states in negative-refraction photonic crystals in the near-infrared range. Phys. Rev. Lett. 100, 187401 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Decoopman, T., Tayeb, G., Enoch, S., Maystre, D. & Gralak, B. Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability. Phys. Rev. Lett. 97, 073905 (2006).

    ADS  Article  Google Scholar 

  25. 25

    Lu, Z. et al. Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies. Phys. Rev. Lett. 95, 153901 (2005).

    ADS  Article  Google Scholar 

  26. 26

    Parimi, P. V., Lu, W. T., Vodo, P. & Sridhar, S. Photonic crystals: imaging by flat lens using negative refraction. Nature 426, 404 (2003).

    ADS  Article  Google Scholar 

  27. 27

    Notomi, M. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 010696 (2000).

    Article  Google Scholar 

  28. 28

    Li, J., Zhou, L., Chan, C. T. & Sheng, P. Photonic band gap from a stack of positive and negative index materials. Phys. Rev. Lett. 90, 083901 (2003).

    ADS  Article  Google Scholar 

  29. 29

    Panoiu, N. C., Osgood, R. M., Zhang, S. & Brueck, S. R. J. Zero-n bandgap in photonic crystal superlattices. J. Opt. Soc. Am. B 23, 506–513 (2006).

    ADS  Article  Google Scholar 

  30. 30

    Kocaman, S. et al. Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared. Phys. Rev. Lett. 102, 203905 (2009).

    ADS  Article  Google Scholar 

  31. 31

    Yuan, Y. et al. Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials. Opt. Express 14, 2220–2227 (2006).

    ADS  Article  Google Scholar 

  32. 32

    Zhang, L., Zhang, Y., He, L., Li, H. & Chen, H. Experimental investigation on zero-n eff gaps of photonic crystals containing single-negative materials. Eur. Phys. J. B 62, 1–6 (2008).

    ADS  Article  Google Scholar 

  33. 33

    Hegde, R. S. & Winful, H. G. Zero-n gap soliton. Opt. Lett. 30, 1852–1854 (2005).

    ADS  Article  Google Scholar 

  34. 34

    Namdar, A., Shadrivov, I. V. & Kivshar, Y. S. Excitation of backward Tamm states at an interface between a periodic photonic crystal and a left-handed metamaterial. Phys. Rev. A 75, 053812 (2007).

    ADS  Article  Google Scholar 

  35. 35

    Mocella, V. et al. Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial. Phys. Rev. Lett. 102, 133902 (2009).

    ADS  Article  Google Scholar 

  36. 36

    Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N. & Vincent, P. A metamaterial for directive emission. Phys. Rev. Lett. 89, 213902 (2002).

    ADS  Article  Google Scholar 

  37. 37

    Ziolkowski, R. W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004).

    ADS  Article  Google Scholar 

  38. 38

    Litchinitser, N. M., Maimistov, A. I., Gabitov, I. R., Sagdeev, R. Z. & Shalaev, V. M. Metamaterials: electromagnetic enhancement at zero-index transition. Opt. Lett. 33, 2350–2352 (2008).

    ADS  Article  Google Scholar 

  39. 39

    Wang, L-G., Li, G-X. & Zhu, S-Y. Thermal emission from layered structures containing a negative-zero-positive index metamaterial. Phys. Rev. B 81, 073105 (2010).

    ADS  Article  Google Scholar 

  40. 40

    Shadrivov, I. V., Sukhorukov, A. A. & Kivshar, Y. S. Complete band gaps in one-dimensional left-handed periodic structures. Phys. Rev. Lett 95, 193903 (2005).

    ADS  Article  Google Scholar 

  41. 41

    Hao, J., Yan, W. & Qiu, M. Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett. 96, 101109 (2010).

    ADS  Article  Google Scholar 

  42. 42

    Jiang, H., Chen, H., Li, H., Zhang, Y. & Zhu, S. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl. Phys. Lett. 83, 5386 (2003).

    ADS  Article  Google Scholar 

  43. 43

    Bria, D. et al. Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials. Phys. Rev. E 69, 066613 (2004).

    ADS  Article  Google Scholar 

  44. 44

    Davoyan, A. R., Shadrivov, I. V., Sukhorukov, A. A. & Kivshar, Y. S. Bloch oscillations in chirped layered structures with metamaterials. Opt. Express 16, 3299–3304 (2008).

    ADS  Article  Google Scholar 

  45. 45

    Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    ADS  Article  Google Scholar 

  46. 46

    Foteinopoulou, S. & Soukoulis, C. M. Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects. Phys. Rev. B 72, 165112 (2005).

    ADS  Article  Google Scholar 

  47. 47

    Yariv, A. & Yeh, P. Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

  48. 48

    Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    ADS  Article  Google Scholar 

  49. 49

    Oskooi, A. F. et al. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comp. Phys. Commun. 181, 687–702 (2010).

    ADS  Article  Google Scholar 

  50. 50

    Henry, M. D., Welch, C. & Scherer, A. Techniques of cryogenic reactive ion etching in silicon for fabrication of sensors. J. Vac. Sci. Technol. A 27, 1211–1216 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Chatterjee for helpful discussions and Ayse Selin Kocaman for the preparation of figures. The authors also acknowledge funding support from a NSF CAREER Award (0747787), NSF ECCS (1102257), DARPA InPho and the EPSRC (EP/G030502/1). Electron-beam nanopatterning was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-98CH10886). The authors acknowledge the use of the UCL Legion High Performance Computing Facility and associated support services in the completion of this work.

Author information

Affiliations

Authors

Contributions

S.K. performed the experiments. M.S.A., M.B.Y., D.L.K. and A.S. nanofabricated the samples. P.H. performed near-field measurements. S.K., J.F.M., C.G.B. and N.C.P. designed and performed the numerical simulations. S.K., N.C.P. and C.W.W. prepared the manuscript.

Corresponding authors

Correspondence to S. Kocaman or C. W. Wong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 796 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kocaman, S., Aras, M., Hsieh, P. et al. Zero phase delay in negative-refractive-index photonic crystal superlattices. Nature Photon 5, 499–505 (2011). https://doi.org/10.1038/nphoton.2011.129

Download citation

Further reading

Search

Quick links