Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Why future supercomputing requires optics

Could optical technology offer a solution to the heat generation and bandwidth limitations that the computing industry is starting to face? The benefits of energy-efficient passive components, low crosstalk and parallel processing suggest that the answer may be yes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Stanford Vector Matrix Multiplier.
Figure 2: The concept of 'zero-energy' logic gates using optical passive elements.
Figure 3: Architecture for solving Hamiltonian path problem.






  5. Assefa, S. Xia, F. & Vlasov, Y. Nature 464, 80–84 (2010).

    Article  ADS  Google Scholar 


  7. Dolev, S., Haist, T. & Oltean, M. (eds) in Proc. 1st Int. Workshop on Optical Supercomputing Vol. 5172 (Springer, 2008).

    Book  Google Scholar 

  8. Dolev, S. & Oltean, M. (eds) in Proc. 2nd Int. Workshop on Optical Supercomputing Vol. 5882 (Springer, 2009).

    Book  Google Scholar 

  9. Caulfield, H. J., Dolev, S. & Green, W. M. J. (eds) J. Opt. Soc. Am. A 26 (Optical High-Performance Computing feature issue) (2009).

    Google Scholar 

  10. Caulfield, H. J., Dolev, S. & Green, W. M. J. (eds) Appl. Opt. A 48 (Optical High-Performance Computing feature issue) (2009).

    Google Scholar 

  11. Tamir, D., Shaked, N., Wilson, P. & Dolev, S. J. Opt. Soc. Am. A 26, A11–A20 (2009).

    Article  ADS  Google Scholar 

  12. Landauer, R. IBM J. Res. Dev. 5, 183–191 (1961).

    Article  Google Scholar 

  13. Hardy, J. & Shamir, J. Opt. Express 15, 150–165 (2007).

    Article  ADS  Google Scholar 

  14. Caulifield, H. J., Soref, R. A, Zavalin, A. & Hardy, J. Opt. Commun. 2 71, 365–376 (2007).

    Article  Google Scholar 

  15. Caulfield, H. J. in Proc. 2nd Int. Workshop on Optical Supercomputing Vol. 5882, 30–36 (Springer, 2009).

    Book  Google Scholar 

  16. Dolev, S. & Nir, Y. US patent 20050013531 (2005).

  17. Dolev, S. & Fitoussi, H. in Proc. 4th Int. Conf. FUN 2007, 120–134 (Springer, 2007).

    Google Scholar 

  18. Bozhevolnyi, S. I. Plasmonic Nanoguides and Circuits (World Scientific, 2008).

    Book  Google Scholar 

  19. Brongersma, M. L. et al. in Plasmonic Nanoguides and Circuits (ed. Bozhevolnya, S. I.) (World Scientific, 2008).

    Google Scholar 

  20. Fainman, Y., Ikeda, K. & Tan, D. T. H. in Proc. 2nd Int. Workshop on Optical Supercomputing Vol. 5882, 2–4 (Springer, 2009).

    Book  Google Scholar 

Download references


We thank William Green, Shaya Fainman, Joseph Rosen, Nati Shaked and Hen Fitoussi for helpful inputs.

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caulfield, H., Dolev, S. Why future supercomputing requires optics. Nature Photon 4, 261–263 (2010).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing