Abstract
Although high-speed all-optical switches are expected to replace their electrical counterparts in information processing, their relatively large size and power consumption have remained obstacles. We use a combination of an ultrasmall photonic-crystal nanocavity and strong carrier-induced nonlinearity in InGaAsP to successfully demonstrate low-energy switching within a few tens of picoseconds. Switching energies with a contrast of 3 and 10 dB of 0.42 and 0.66 fJ, respectively, have been obtained, which are over two orders of magnitude lower than those of previously reported all-optical switches. The ultrasmall cavity substantially enhances the nonlinearity as well as the recovery speed, and the switching efficiency is maximized by a combination of two-photon absorption and linear absorption in the InGaAsP nanocavities. These switches, with their chip-scale integratability, may lead to the possibility of low-power, high-density, all-optical processing in a chip.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Optical neural network via loose neuron array and functional learning
Nature Communications Open Access 03 May 2023
-
Hot-carrier tunable abnormal nonlinear absorption conversion in quasi-2D perovskite
Nature Communications Open Access 14 November 2022
-
All-optical switching in epsilon-near-zero asymmetric directional coupler
Scientific Reports Open Access 26 October 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Tucker, R. S. A green internet. 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society 4–5 (2008).
Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).
Gopal, A. V. et al. Intersubband absorption saturation in InGaAs–AlAsSb quantum wells. IEEE J. Quantum Electron. 38, 1515–1520 (2002).
Cong, G. W., Akimoto, R., Akita, K., Hasama, T. & Ishikawa, H. Low-saturation-energy-driven ultrafast all-optical switching operation in (CdS/ZnSe)/BeTe intersubband transition. Opt. Express 15, 12123–12130 (2007).
Nakamura, S., Ueno, Y. & Tajima, K. Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach–Zehnder-type all-optical switch. Appl. Phys. Lett. 78, 3929–3931 (2001).
Neilsen, M. L., Mørk, J., Suzuki, R., Sakaguchi, J. & Ueno, Y. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high speed SOA-based all-optical switches. Opt. Express 14, 331–347 (2006).
Yamamoto, T., Yoshida, E. & Nakazawa, M. Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals. Electron. Lett. 34, 1013–1014 (1998).
Lee, J. H., Tanemura, T., Takushima, Y. & Kikuchi, K. All-optical 80-Gb/s add–drop multiplexer using fiber-based nonlinear optical loop mirror. IEEE Photon. Technol. Lett. 17, 840–842 (2005).
Andrekson, P. A., Sunnerud, H., Oda, S., Nishitani, T. & Yang, J. Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation. Opt. Express 16, 10956–10961 (2008).
Miller, D. A. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).
Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E. & Ryu, H. Y. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).
Ryu, H. Y., Notomi, M., Kim, G. H. & Lee, Y. H. High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity. Opt. Express 12, 1708–1719 (2004).
Kuramochi, E. et al. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112 (2006).
Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photon. 1, 49–52 (2007).
Takahashi, Y. et al. High-Q nanocavity with a 2-ns photon lifetime. Opt. Express 15, 17206–17213 (2007).
Soljacic, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).
Notomi, M. et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005).
Tanabe, T., Notomi, M., Shinya, A., Mitsugi, S. & Kuramochi, E. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 151112 (2005).
Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007).
Husko, C. et al. Ultrafast all-optical modulation in GaAs photonic crystal cavities Appl. Phys. Lett. 94, 021111 (2009).
Nakamura, H. et al. Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks. Opt. Express 12, 6606–6614 (2004).
Zhang, Z. & Qiu, M. Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt. Express 12, 3988–3995 (2004).
Nozaki, K., Kita, S. & Baba, T. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506–7514 (2007).
Lan, S., Gopal, A. V., Kanamoto, K. & Ishikawa H. Ultrafast response of photonic crystal atoms with Kerr nonlinearity to ultrashort optical pulses. Appl. Phys. Lett. 84, 5124–5126 (2004).
Koos, C. et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photon. 3, 216–219 (2009).
Bennett, B. R., Soref, R. A. & Del Alamo, J. A. Carrier-induced change in refractive GaAs, and InGaAsP index of InP. IEEE J. Quantum Electron. 26, 113–122 (1990).
Mondia, J. P., Tan, H. W., Linden, S., Driel, H. M. & Young, J. F. Ultrafast tuning of two-dimensional planar photonic-crystal waveguides via free-carrier injection and the optical Kerr effect. J. Opt. Soc. Am. B 22, 2480–2486 (2005).
Barclay, P. E., Srinivasan, K. & Painter, O. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. Opt. Express 13, 801–820 (2005).
Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003).
Van, V. et al. All-optical nonlinear switching in GaAs–AlGaAs microring resonators. IEEE Photon. Technol. Lett. 14, 74–76 (2002).
Tsang, H. K. et al. Two-photon absorption and self-phase modulation in InGaAsP/lnP multi-quantum-well waveguides. J. Appl. Phys. 70, 3992–3994 (1991).
Mørk, J., Mark, J. & Seltzer, C. P. Carrier heating in InGaAsP laser amplifiers due to two-photon absorption. Appl. Phys. Lett. 64, 2206–2208 (1994).
Adachi, S. Physical Properties of iii–vSemiconductor Compounds, InP, InAs, GaAs, GaP, InGaAs and InGaAsP Ch 8 (Wiley, 1992).
Tanabe, T., Taniyama, H. & Notomi, M. Carrier diffusion and recombination in photonic crystal nanocavity optical switches. IEEE J. Lightwave Technol. 26, 1396–1403 (2008).
Szymanski, D. M. et al. Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers. Appl. Phys. Lett. 95, 141108 (2009).
Tran, Q. V., Combrié, S., Colman, P. & De Rossi, A. Photonic crystal membrane waveguides with low insertion losses. Appl. Phys. Lett. 95, 061105 (2009).
Fan, S. Sharp asymmetric line shapes in side-coupled waveguide–cavity systems. Appl. Phys. Lett. 80, 908–910 (2002).
Yang, X., Husco, C., Wong, C. W., Yu, M. & Kwong, D. L. Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities. Appl. Phys. Lett. 91, 051113 (2007).
Manolatou, C. et al. Coupling of modes analysis of resonant channel add–drop filters. IEEE J. Quantum Electron. 35, 1322–1331 (1999).
Kim, G. H., Lee, Y. H., Shinya, A. & Notomi, M. Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode. Opt. Express 12, 6624–6631 (2005).
Shinya, A. et al. All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal. Opt. Express 16, 19382–19387 (2008).
Waldow. M. et al. 25 ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. Opt. Express 16, 7693–7702 (2008).
Acknowledgements
The authors would like to thank A. Yokoo, E. Kuramochi, H. Sumikura and Y.G. Roh for fruitful discussions.
Author information
Authors and Affiliations
Contributions
K.N. performed the experiment, analysed the data and wrote the manuscript. T.T. and A.S. supported the measurement set-up and the discussion. S.M. and T.S. fabricated the sample. H.T. supported the FDTD calculation. M.N. supported the numerical calculation, partly wrote the manuscript and led the project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Nozaki, K., Tanabe, T., Shinya, A. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photon 4, 477–483 (2010). https://doi.org/10.1038/nphoton.2010.89
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2010.89
This article is cited by
-
Optical neural network via loose neuron array and functional learning
Nature Communications (2023)
-
Nonlinear optics from the viewpoint of interaction time
Nature Photonics (2023)
-
Ultrafast all-optical switching in a silicon-polymer compound slotted photonic crystal nanobeam cavity
Optical Review (2023)
-
A full degree-of-freedom spatiotemporal light modulator
Nature Photonics (2022)
-
All-optical switching in epsilon-near-zero asymmetric directional coupler
Scientific Reports (2022)