Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental free-space quantum teleportation



Quantum teleportation1 is central to the practical realization of quantum communication2,3. Although the first proof-of-principle demonstration was reported in 1997 by the Innsbruck4 and Rome groups5, long-distance teleportation has so far only been realized in fibre with lengths of hundreds of metres6,7. An optical free-space link is highly desirable for extending the transfer distance, because of its low atmospheric absorption for certain ranges of wavelength. By following the Rome scheme5, which allows a full Bell-state measurement, we report free-space implementation of quantum teleportation over 16 km. An active feed-forward technique has been developed to enable real-time information transfer. An average fidelity of 89%, well beyond the classical limit of 2/3, is achieved. Our experiment has realized all of the non-local aspects of the original teleportation scheme and is equivalent to it up to a local unitary operation5. Our result confirms the feasibility of space-based experiments, and is an important step towards quantum-communication applications on a global scale.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental quantum teleportation in free space.
Figure 2: Experimental data for characterizing the BSM interferometer.
Figure 3: Experimental results of teleportation of six universal states.


  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classic and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  2. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  4. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  MATH  Google Scholar 

  5. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  6. Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

    Article  ADS  Google Scholar 

  7. Ursin, R. et al. Quantum teleportation across the Danube. Nature 430, 849–849 (2004).

    Article  ADS  Google Scholar 

  8. Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  9. Yamamoto, T., Koashi, M., Özdemir, S. K. & Imoto, N. Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003).

    Article  ADS  Google Scholar 

  10. Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N. & Pan, J.-W. Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003).

    Article  ADS  Google Scholar 

  11. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).

    Article  ADS  Google Scholar 

  12. Zhao, Z., Chen, Y.-A., Zhang, A.-N., Yang, T., Briegel, H. -J. & Pan, J.-W. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).

    Article  ADS  Google Scholar 

  13. Zhang, Q. et al. Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006).

    Article  ADS  Google Scholar 

  14. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    Article  ADS  Google Scholar 

  15. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    Article  ADS  Google Scholar 

  16. Chen, Y.-A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

    Article  ADS  Google Scholar 

  17. Hughes, R. J. et al. Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43.1–43.14 (2002).

    Article  Google Scholar 

  18. Kurtsiefer, C. et al. Quantum cryptography: a step towards global key distribution. Nature 419, 450 (2002).

    Article  ADS  Google Scholar 

  19. Aspelmeyer, M. et al. Long-distance free-space distribution of quantum entanglement. Science 301, 621–623 (2003).

    Article  ADS  Google Scholar 

  20. Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).

    Article  ADS  Google Scholar 

  21. Ursin, R. et al. Free-space distribution of entanglement and single photons over 144 km. Nature Phys. 3, 481–486 (2007).

    Article  ADS  Google Scholar 

  22. Villoresi, P. et al. Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10, 033038 (2008).

    Article  ADS  Google Scholar 

  23. Fedrizzi, A. et al. High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Phys. 5, 389–392 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  24. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  25. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  26. Giacomini, S., Sciarrino, F., Lombardi, E. & De Martini, F. Active teleportation of a quantum bit. Phys. Rev. A 66, 030302(R) (2002).

    Article  ADS  MathSciNet  Google Scholar 

Download references


This research, leading to the results reported here, was supported by the Chinese Academy of Sciences, the National Fundamental Research Program of China under grant no. 2006CB921900, and the National Natural Science Foundation of China.

Author information

Authors and Affiliations



J.-W.P. and C.-Z.P. supervised the project overall. J.-W.P., C.-Z.P. and H.Y. designed the experiment. X.-M.J., J.-G.R., B.Y., Z.-H.Y., F.Z., X.-F.X., S.-K.W., S.J., T.Y. and C.-Z.P. performed the experiment. D.Y. and Y.-F.H. designed the electric devices. X.-M.J., J.-G.R., K.C. and J.-W.P. analysed the data. X.-M.J., K.C., C.-Z.P. and J.-W.P. wrote the paper.

Corresponding authors

Correspondence to Cheng-Zhi Peng or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, XM., Ren, JG., Yang, B. et al. Experimental free-space quantum teleportation. Nature Photon 4, 376–381 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing