Room-temperature polariton lasing in an organic single-crystal microcavity


The optical properties of organic semiconductors are almost exclusively described using the Frenkel exciton picture1. In this description, the strong Coulombic interaction between an excited electron and the charged vacancy it leaves behind (a hole) is automatically taken into account. If, in an optical microcavity, the exciton–photon interaction is strong compared to the excitonic and photonic decay rates, a second quasiparticle, the microcavity polariton, must be introduced to properly account for this coupling2. Coherent, laser-like emission from polaritons has been predicted to occur when the ground-state occupancy of polaritons 〈ngs〉, reaches 1 (ref. 3). This process, known as polariton lasing, can occur at thresholds much lower than required for conventional lasing. Polaritons in organic semiconductors are highly stable at room temperature, but to our knowledge, there has as yet been no report of nonlinear emission from these structures. Here, we demonstrate polariton lasing at room temperature in an organic microcavity composed of a melt-grown anthracene single crystal sandwiched between two dielectric mirrors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental structure and dispersion of the b-polarized polariton.
Figure 2: Intensity dependence.
Figure 3: Angle-resolved photoluminescence.
Figure 4: Temporal response and occupation number.
Figure 5: Gain measurement.


  1. 1

    Pope, M., Swenberg, C. E. & Pope, M. Electronic Processes in Organic Crystals and Polymers 2nd edn (Oxford Univ. Press, 1999).

    Google Scholar 

  2. 2

    Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998).

    ADS  Article  Google Scholar 

  3. 3

    Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton–polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).

    ADS  Article  Google Scholar 

  4. 4

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  Article  Google Scholar 

  5. 5

    Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).

    ADS  Article  Google Scholar 

  6. 6

    Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    ADS  Article  Google Scholar 

  7. 7

    Malpuech, G., Kavokin, A. & Laussy, F. P. Polariton Bose condensation in microcavities. Phys. Status Solidi A 195, 568–578 (2003).

    ADS  Article  Google Scholar 

  8. 8

    Malpuech, G., Rubo, Y. G., Laussy, F. P., Bigenwald, P. & Kavokin, A. V. Polariton laser: thermodynamics and quantum kinetic theory. Semicond. Sci. Technol. 18, S395–S404 (2003).

    ADS  Article  Google Scholar 

  9. 9

    Giebink, N. C. & Forrest, S. R. Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 79, 073302 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Kena-Cohen, S., Davanço, M. & Forrest, S. R. Strong exciton–photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101, 116401 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Davydov, A. S. Theory of Molecular Excitons (Plenum Press, 1971).

    Google Scholar 

  12. 12

    Zoubi, H. & La Rocca, G. C. Microscopic theory of anisotropic organic cavity exciton polaritons. Phys. Rev. B 71, 235316 (2005).

    ADS  Article  Google Scholar 

  13. 13

    Litinskaya, M., Reineker, P. & Agranovich, V. M. Exciton–polaritons in a crystalline anisotropic organic microcavity. Phys. Status Solidi A 201, 646–654 (2004).

    ADS  Article  Google Scholar 

  14. 14

    Kena-Cohen, S. & Forrest, S. R. Giant Davydov splitting of the lower polariton branch in a polycrystalline tetracene microcavity. Phys. Rev. B 77, 073205 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Kena-Cohen, S., Davanco, M. & Forrest, S. R. Resonant Rayleigh scattering from an anisotropic organic single-crystal microcavity. Phys. Rev. B 78, 153102 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Debernardi, P., Bava, G. P., Degen, C., Fischer, I. & Elsasser, W. Influence of anisotropies on transverse modes in oxide-confined VCSELs. IEEE J. Quantum Electron. 38, 73–84 (2002).

    ADS  Article  Google Scholar 

  17. 17

    Litinskaya, M., Reineker, P. & Agranovich, V. M. Fast polariton relaxation in strongly coupled organic microcavities. J. Lumin. 110, 364–372 (2004).

    Article  Google Scholar 

  18. 18

    Mazza, L., Fontanesi, L. & La Rocca, G. C. Organic-based microcavities with vibronic progressions: photoluminescence. Phys. Rev. B 80, 235314 (2009).

    ADS  Article  Google Scholar 

  19. 19

    Tassone, F. & Yamamoto, Y. Exciton–exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999).

    ADS  Article  Google Scholar 

  20. 20

    Avanesyan, O. S. et al. Features of light-emission and stimulated Raman-scattering in anthracene-crystals. Soviet J. Quantum Electron. 7, 403–405 (1977).

    ADS  Article  Google Scholar 

  21. 21

    Litinskaya, M. Exciton polariton kinematic interaction in crystalline organic microcavities. Phys. Rev. B 77, 155325 (2008).

    ADS  Article  Google Scholar 

  22. 22

    Tischler, J. R., Bradley, M. S., Bulovic, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

    ADS  Article  Google Scholar 

Download references


The authors acknowledge fruitful discussions with H. Deng. This work was performed at the Lurie Nanofabrication Facility at the University of Michigan and was supported by Universal Display Corp. and the Air Force Office of Scientific Research.

Author information




S.K.C. and S.R.F conceived the experiments. S.K.C. fabricated the structures and carried out the measurements. Both authors contributed to the analysis and manuscript.

Corresponding author

Correspondence to S. R. Forrest.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kéna-Cohen, S., Forrest, S. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon 4, 371–375 (2010).

Download citation

Further reading