In situ wavefront correction and its application to micromanipulation


In any optical system, distortions to a propagating wavefront reduce the spatial coherence of a light field, making it increasingly difficult to obtain the theoretical diffraction-limited spot size. Such aberrations are severely detrimental to optimal performance in imaging, nanosurgery, nanofabrication and micromanipulation, as well as other techniques within modern microscopy. We present a generic method based on complex modulation for true in situ wavefront correction that allows compensation of all aberrations along the entire optical train. The power of the method is demonstrated for the field of micromanipulation, which is very sensitive to wavefront distortions. We present direct trapping with optimally focused laser light carrying power of a fraction of a milliwatt as well as the first trapping through highly turbid and diffusive media. This opens up new perspectives for optical micromanipulation in colloidal and biological physics and may be useful for various forms of advanced imaging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Wavefront correction.
Figure 2: Demonstration of the optimization method.
Figure 3: Wavefront correction for trapping.
Figure 4: Trapping through a turbid medium.
Figure 5: Quantification of wavefront flatness.


  1. 1

    Prasad, P. N. Introduction to Biophotonics (Wiley-Interscience, 2003).

    Google Scholar 

  2. 2

    Zhuang, X. Nano-imaging with STORM. Nature Photon. 3, 365–367 (2009).

    ADS  Article  Google Scholar 

  3. 3

    Heintzmann, R. & Gustafsson, M. G. L. Subdiffraction resolution in continuous samples. Nature Photon. 3, 362–364 (2009).

    ADS  Article  Google Scholar 

  4. 4

    Hell, S. W., Schmidt, R. & Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photon. 3, 381–387 (2009).

    ADS  Article  Google Scholar 

  5. 5

    Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    ADS  Article  Google Scholar 

  6. 6

    Dholakia, K. & Reece, P. Optical micromanipulation takes the hold. Nano Today 1, 18–27 (2006).

    Article  Google Scholar 

  7. 7

    Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    ADS  Article  Google Scholar 

  8. 8

    Tsukakoshi, M., Kurata, S., Nomiya, Y., Ikawa, Y. & Kasuya, T. A novel method of DNA transfection by laser microbeam cell surgery. Appl. Phys. B 35, 135–140 (1984).

    ADS  Article  Google Scholar 

  9. 9

    Liang, H., Wright, H. W., Cheng, S., He, W. & Berns, M. W. Micromanipulation of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). Exp. Cell Res. 204, 110–120 (1993).

    Article  Google Scholar 

  10. 10

    Tirlapur, U. K. & Konig, K. Cell biology: targeted transfection by femtosecond laser. Nature 418, 290–291 (2002).

    ADS  Article  Google Scholar 

  11. 11

    Yanik, M. F. et al. Neurosurgery: functional regeneration after laser axotomy. Nature 432, 822 (2004).

    ADS  Article  Google Scholar 

  12. 12

    McLeod, E. & Arnold, C. B. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotech. 3, 413–417 (2008).

    Article  Google Scholar 

  13. 13

    Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    ADS  Article  Google Scholar 

  14. 14

    Muller, R. A. & Buffington, A. Real-time correction of atmospherically degraded telescope images through image sharpening. J. Opt. Soc. Am. 64, 1200–1210 (1974).

    ADS  Article  Google Scholar 

  15. 15

    Beuzit, J. L. et al. Adaptive optics on a 3.6-meter telescope. The ADONIS system. Exp. Astron. 7, 285–292 (1997).

    ADS  Article  Google Scholar 

  16. 16

    Noll, R. J. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66, 207–211 (1976).

    ADS  Article  Google Scholar 

  17. 17

    Jesacher, A. et al. Wavefront correction of spatial light modulators using an optical vortex image. Opt. Express 15, 5801–5808 (2007).

    ADS  Article  Google Scholar 

  18. 18

    Wulff, K. D. et al. Aberration correction in holographic optical tweezers. Opt. Express 14, 4170–4175 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Booth, M. J., Neil, M. A. A., Juškaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl Acad. Sci. USA 99, 5788–5792 (2002).

    ADS  Article  Google Scholar 

  20. 20

    Débarre, D. et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett. 34, 2495–2497 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Roichman, Y., Waldron, A., Gardel, E. & Grier, D. G. Optical traps with geometric aberrations. Appl. Opt. 45, 3425–3429 (2006).

    ADS  Article  Google Scholar 

  22. 22

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  23. 23

    Vellekoop, I. M. & Mosk, A. P. Phase control algorithms for focusing light through turbid media. Opt. Commun. 281, 3071–3080 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    ADS  Article  Google Scholar 

  25. 25

    Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

    ADS  Article  Google Scholar 

  26. 26

    Rohrbach, A. Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. Phys. Rev. Lett. 95, 168102 (2005).

    ADS  Article  Google Scholar 

  27. 27

    Brau, R. R. et al. Passive and active microrheology with optical tweezers. J. Opt. A 9, S103–S112 (2007).

    ADS  Article  Google Scholar 

  28. 28

    Jesacher, A., Fürhapter, S., Bernet, S. & Ritsch-Marte, M. Diffractive optical tweezers in the Fresnel regime. Opt. Express 12, 2243–2250 (2004).

    ADS  Article  Google Scholar 

  29. 29

    Mazilu, M. Spin and angular momentum operators and their conservation. J. Opt. A 11, 094005 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Reihani, S. N. S. & Oddershede, L. B. Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. Opt. Lett. 32, 1998–2000 (2007).

    ADS  Article  Google Scholar 

  31. 31

    Theofanidou, E., Wilson, L., Hossack, W. J. & Arlt, J. Spherical aberration correction for optical tweezers. Opt. Commun. 236, 145–150 (2004).

    ADS  Article  Google Scholar 

  32. 32

    Curtis, J., Koss, B. & Grier, D. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    ADS  Article  Google Scholar 

  33. 33

    Molloy, J. & Padgett, M. Lights, action: optical tweezers. Contemp. Phys. 43, 241–258 (2002).

    ADS  Article  Google Scholar 

  34. 34

    Jacques, S. L. & Pogue, B. W. Tutorial on diffuse light transport. J. Biomed. Opt. 13, 041302 (2008).

    ADS  Article  Google Scholar 

  35. 35

    Born, M. & Wolf, E. Principles of Optics (Pergamon Press, 1999).

    Google Scholar 

  36. 36

    Zhang, Z. & Menq, C.-H. Three-dimensional particle tracking with subnanometer resolution using off-focus images. Appl. Opt. 47, 2361–2370 (2008).

    ADS  Article  Google Scholar 

  37. 37

    Durnin, J., Miceli, J. J. & Eberly, J. Comparison of Bessel and Gaussian beams. Opt. Lett. 13, 79–80 (1988).

    ADS  Article  Google Scholar 

  38. 38

    Čižmár, T. et al. Generation of multiple Bessel beams for a biophotonics workstation. Opt. Express 16, 14024–14035 (2008).

    ADS  Article  Google Scholar 

  39. 39

    Čižmár, T. & Dholakia, K. Tunable Bessel light modes: engineering the axial propagation. Opt. Express 17, 15558–15570 (2009).

    ADS  Article  Google Scholar 

  40. 40

    Gerchberg, R. & Saxton, W. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar 

  41. 41

    Spalding, G., Courtial, J. & Leonardo, R. D. Holographic optical trapping, in Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, 2008).

    Google Scholar 

Download references


The authors acknowledge support for this project from the UK Engineering and Physical Sciences Research Council. Thanks also go to W.M. Lee and R. Marchington for technical advice and support. K.D. is a Royal Society–Wolfson Merit Award holder.

Author information




T.Č. and M.M. developed the presented method. T.Č. performed all the experiments and subsequent data analysis. K.D. planned the project. All authors participated in the analysis and discussion of the results and writing of the paper.

Corresponding author

Correspondence to Tomáš Čižmár.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon 4, 388–394 (2010).

Download citation

Further reading