Ultrafast optical spin echo in a single quantum dot

Abstract

Many proposed photonic quantum networks rely on matter qubits to serve as memory elements1,2. The spin of a single electron confined in a semiconductor quantum dot forms a promising matter qubit that may be interfaced with a photonic network3. Ultrafast optical spin control allows gate operations to be performed on the spin within a picosecond timescale4,5,6,7,8,9,10,11,12,13,14, orders of magnitude faster than microwave or electrical control15,16. One obstacle to storing quantum information in a single quantum dot spin is the apparent nanosecond-timescale dephasing due to slow variations in the background nuclear magnetic field15,16,17. Here we use an ultrafast, all-optical spin echo technique to increase the decoherence time of a single quantum dot electron spin from nanoseconds to several microseconds. The ratio of decoherence time to gate time exceeds 105, suggesting strong promise for future photonic quantum information processors18 and repeater networks1,2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up for optical single-spin manipulation and detection.
Figure 2: Experimental demonstration of spin echo and single-spin dephasing.
Figure 3: Measurement of T2 using spin echo.
Figure 4: Magnetic field dependence of T2.

References

  1. 1

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS  Article  Google Scholar 

  2. 2

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Article  Google Scholar 

  3. 3

    Yao, W., Liu, R.-B. & Sham, L. J. Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005).

    ADS  Article  Google Scholar 

  4. 4

    Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001).

    ADS  Article  Google Scholar 

  5. 5

    Berezovsky, J., Mikkelson, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Dutt, M. V. G. et al. Ultrafast optical control of electron spin coherence in charged GaAs quantum dots. Phys. Rev. B 74, 125306 (2006).

    ADS  Article  Google Scholar 

  7. 7

    Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

    ADS  Article  Google Scholar 

  8. 8

    Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nature Phys. 5, 262–266 (2007).

    ADS  Article  Google Scholar 

  9. 9

    Carter, S. G., Chen, Z. & Cundiff, S. T. Ultrafast below-resonance Raman rotation of electron spins in GaAs quantum wells. Phys. Rev. B 76, 201308(R) (2007).

    ADS  Article  Google Scholar 

  10. 10

    Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Carter, S. G. et al. Directing nuclear spin flips in InAs quantum dots using detuned optical pulse trains. Phys. Rev. Lett. 102, 167403 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Clark, S. et al. Ultrafast optical spin echo for electron spins in semiconductors. Phys. Rev. Lett. 102, 247601 (2009).

    ADS  Article  Google Scholar 

  13. 13

    Phelps, C., Sweeney, T., Cox, R. T. & Wang, H. Ultrafast coherent electron spin flip in a modulation-doped CdTe quantum well. Phys. Rev. Lett. 102, 237402 (2009).

    ADS  Article  Google Scholar 

  14. 14

    Kim, E. D. et al. Fast spin rotations and optically controlled geometric phases in a quantum dot. Preprint at <http://arXiv.org/0910.5189> (2009).

  15. 15

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008).

    ADS  Article  Google Scholar 

  17. 17

    Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    ADS  Article  Google Scholar 

  18. 18

    Imamog¯lu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    ADS  Article  Google Scholar 

  19. 19

    Dutt, M. V. G. et al. Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots. Phys. Rev. Lett. 94, 227403 (2005).

    ADS  Article  Google Scholar 

  20. 20

    Bracker, A. S. et al. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. Phys. Rev. Lett. 94, 047402 (2005).

    ADS  Article  Google Scholar 

  21. 21

    Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    ADS  Article  Google Scholar 

  22. 22

    Coish, W. A. & Loss, D. Hyperfine interaction in a quantum dot: non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).

    ADS  Article  Google Scholar 

  23. 23

    Witzel, W. M. & Das Sarma, S. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006).

    ADS  Article  Google Scholar 

  24. 24

    Yao, W., Liu, R.-B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    ADS  Article  Google Scholar 

  25. 25

    Liu, R.-B., Yao, W. & Sham, L. J. Control of electron spin decoherence caused by electron-nuclear spin dynamics in a quantum dot. New J. Phys. 9, 226 (2007).

    ADS  Article  Google Scholar 

  26. 26

    Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    ADS  Article  Google Scholar 

  27. 27

    Xu, X. et al. Fast spin state initialization in a singly charged InAs–GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

    ADS  Article  Google Scholar 

  28. 28

    Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Information and Communications Technology (NICT Japan), the Ministry of Education, Culture, Sports, Science and Technology (MEXT Japan), the National Science Foundation (CCF0829694), the National Institute of Standards and Technology (60NANB9D9170), the Special Coordination Funds for Promoting Science and Technology and the State of Bavaria. We thank T. Steinl, A. Wolf and M. Emmerling for their assistance with sample fabrication. P.L.M. was supported by a David Cheriton Stanford Graduate Fellowship.

Author information

Affiliations

Authors

Contributions

C.S., M.K., and S.H. grew and fabricated the sample. D.P., K.D.G. and P.L.M. carried out the optical experiments. B.F. wrote the data acquisition software. T.D.L. provided theoretical analysis and guidance. Y.Y. and A.F. guided the work. D.P. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to David Press.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Press, D., De Greve, K., McMahon, P. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon 4, 367–370 (2010). https://doi.org/10.1038/nphoton.2010.83

Download citation

Further reading