Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exciton–polariton spin switches

Abstract

Integrated switching devices comprise the building blocks of ultrafast optical signal processing1,2. As the next stage following intensity switching1,3,4, circular polarization switches5,6,7,8,9 are attracting considerable interest because of their applications in spin-based architectures10. They usually take advantage of nonlinear optical effects, and require high powers and external optical elements. Semiconductor microcavities provide a significant step forward due to their low-threshold, polarization-dependent, nonlinear emission11,12, fast operation13 and integrability. Here, we demonstrate a non-local, all-optical spin switch based on exciton–polaritons in a semiconductor microcavity. In the presence of a sub-threshold pump laser (dark regime), a tightly localized probe induces the switch-on of the entire pumped area. If the pump is circularly polarized, the switch is conditional on the polarization of the probe, but if it is linearly polarized, a circularly polarized probe fully determines the final polarization of the pumped area. These results set the basis for the development of spin-based logic devices, integrated in a chip14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polariton dispersion, nonlinear transmission and propagation mechanism.
Figure 2: Circular polarization switch (σ+ pump).
Figure 3: Sensitivity to probe polarization.
Figure 4: Polarization propagation (TE pump).
Figure 5: Probe-controlled polarization.

Similar content being viewed by others

References

  1. Wada, O. Femtosecond all-optical devices for ultrafast communication and signal processing. New J. Phys. 6, 183 (2004).

    Article  ADS  Google Scholar 

  2. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  3. Takahashi, R., Kawamura, Y. & Iwamura, H. Ultrafast 1.55 µm all-optical switching using low-temperature-grown multiple quantum wells. Appl. Phys. Lett. 68, 153–155 (1996).

    Article  ADS  Google Scholar 

  4. Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photon. 2, 433–437 (2008).

    Article  ADS  Google Scholar 

  5. Nishikawa, Y., Tackeuchi, A., Yamaguchi, M., Muto, S. & Wada, O. Ultrafast all-optical spin polarization switch using quantum-well etalon. IEEE J. Sel. Top. Quantum Electron. 2, 661–667 (1996).

    Article  ADS  Google Scholar 

  6. Takahashi, R., Itoh, H. & Iwamura, H. Ultrafast high-contrast all-optical switching using spin polarization in low-temperature-grown multiple quantum wells. Appl. Phys. Lett. 77, 2958–2960 (2000).

    Article  ADS  Google Scholar 

  7. Yildirim, M., Prineas, J. P., Gansen, E. J. & Smirl, A. L. A near-room-temperature all-optical polarization switch based on the excitation of spin-polarized ‘virtual’ carriers in quantum wells. J. Appl. Phys. 98, 063506 (2005).

    Article  ADS  Google Scholar 

  8. Yamamoto, N., Matsuno, T., Takai, H. & Ohtani, N. Circular polarization control in a silicon-based all-optical switch. Jpn J. Appl. Phys. 44, 4749–4751 (2005).

    Article  ADS  Google Scholar 

  9. Johnston, W. J., Prineas, J. P. & Smirl, A. L. Ultrafast all-optical polarization switching in Bragg-spaced quantum wells at 80 K. J. Appl. Phys. 101, 046101 (2007).

    Article  ADS  Google Scholar 

  10. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  11. Martín, M. D., Aichmayr, G., Viña, L. & André, R. Polarization control of the nonlinear emission of semiconductor microcavities. Phys. Rev. Lett. 89, 077402 (2002).

    Article  ADS  Google Scholar 

  12. Gippius, N. A. et al. Polarization multistability of cavity polaritons. Phys. Rev. Lett. 98, 236401 (2007).

    Article  ADS  Google Scholar 

  13. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  ADS  Google Scholar 

  14. Liew, T. C. H., Kavokin, A. V. & Shelykh, I. A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).

    Article  ADS  Google Scholar 

  15. High, A. A., Hammack, A. T., Butov, L. V., Hanson, M. & Gossard, A. C. Exciton optoelectronic transistor. Opt. Lett. 32, 2466–2468 (2007).

    Article  ADS  Google Scholar 

  16. Grosso, G. et al. Excitonic switches operating at around 100 K. Nature Photon. 3, 577–580 (2009).

    Article  ADS  Google Scholar 

  17. Leonard, J. R. et al. Spin transport of indirect excitons. Nano Lett. 9, 4204–4208 (2009).

    Article  ADS  Google Scholar 

  18. Vörös, Z., Balili, R., Snoke, D. W., Pfeiffer, L. & West, K. Long-distance diffusion of excitons in double quantum well structures. Phys. Rev. Lett. 94, 226401 (2005).

    Article  ADS  Google Scholar 

  19. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  ADS  Google Scholar 

  20. Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000).

    Article  ADS  Google Scholar 

  21. Baas, A., Karr, J. P., Eleuch, H. & Giacobino, E. Optical bistability in semiconductor microcavities. Phys. Rev. A 69, 023809 (2004).

    Article  ADS  Google Scholar 

  22. Leyder, C. et al. Interference of coherent polariton beams in microcavities: polarization-controlled optical gates. Phys. Rev. Lett. 99, 196402 (2007).

    Article  ADS  Google Scholar 

  23. Bajoni, D. et al. Optical bistability in a GaAs-based polariton diode. Phys. Rev. Lett. 101, 266402 (2008).

    Article  ADS  Google Scholar 

  24. Leyder, C. et al. Observation of the optical spin Hall effect. Nature Phys. 3, 628–631 (2007).

    Article  ADS  Google Scholar 

  25. Freixanet, T., Sermage, B., Tiberj, A. & Planel, R. In-plane propagation of excitonic cavity polaritons. Phys. Rev. B 61, 7233–7236 (2000).

    Article  ADS  Google Scholar 

  26. Renucci, P. et al. Microcavity polariton spin quantum beats without a magnetic field: a manifestation of Coulomb exchange in dense and polarized polariton systems. Phys. Rev. B 72, 075317 (2005).

    Article  ADS  Google Scholar 

  27. Rosanov, N. N. Optical Bistability and Hysteresis in Distributed Nonlinear Systems (Fizmatlit, 1997).

    Google Scholar 

  28. Moloney, J. V. & Gibbs, H. M. Role of diffractive coupling and self-focusing or defocusing in the dynamical switching of a bistable optical cavity. Phys. Rev. Lett. 48, 1607–1610 (1982).

    Article  ADS  Google Scholar 

  29. Houdré, R., Stanley, R. P., Oesterle, U., Ilegems, M. & Weisbuch, C. Room-temperature cavity polaritons in a semiconductor microcavity. Phys. Rev. B 49, 16761–16764 (1994).

    Article  ADS  Google Scholar 

  30. Christmann, G., Butte, R., Feltin, E., Carlin, J.-F. & Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Agence Nationale pour la Recherche (GEMINI 07NANO 07043). T.C.H.L. was supported by National Centre of Competence in Research Quantum Photonics (NCCR QP), research instrument of the Swiss National Science Foundation (SNSF). A.V.K. acknowledges the support from the European Theoretical Spectroscopy Facility project no. 211956. A.B. is a member of the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding authors

Correspondence to A. Amo or A. Bramati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amo, A., Liew, T., Adrados, C. et al. Exciton–polariton spin switches. Nature Photon 4, 361–366 (2010). https://doi.org/10.1038/nphoton.2010.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing