Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Random distributed feedback fibre laser



The concept of random lasers making use of multiple scattering in amplifying disordered media to generate coherent light has attracted a great deal of attention in recent years. Here, we demonstrate a fibre laser with a mirrorless open cavity that operates via Rayleigh scattering, amplified through the Raman effect. The fibre waveguide geometry provides transverse confinement and effectively one-dimensional random distributed feedback, leading to the generation of a stationary near-Gaussian beam with a narrow spectrum, and with efficiency and performance comparable to regular lasers. Rayleigh scattering due to inhomogeneities within the glass structure of the fibre is extremely weak, making the operation and properties of the proposed random distributed feedback lasers profoundly different from those of both traditional random lasers and conventional fibre lasers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Principle of random distributed feedback fibre laser operation.
Figure 2: Random DFB fibre laser power from the right output fibre end as a function of the total input pump power.
Figure 3
Figure 4: Random DFB fibre laser spectra.
Figure 5: Random DFB fibre laser generation threshold.


  1. Noginov, M. A. Solid-State Random Lasers (Springer, 2005).

    Google Scholar 

  2. Cao, H. Review on latest developments in random lasers with coherent feedback. J. Phys. A 38, 10497–10535 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  3. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  4. Letokhov, V. S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 26, 835–840 (1968).

    ADS  Google Scholar 

  5. Markushev, V. M., Zolin, V. F. & Briskina, Ch. M. Powder laser. Zh. Prikl. Spektrosk. 45, 847–850 (1986).

    Google Scholar 

  6. Gouedard, C., Husson, D., Sauteret, C., Auzel, F. & Migus, A. Generation of spatially incoherent short pulses in laser-pumped neodymiun stoichiometric crystals and powders. J. Opt. Soc. Am. B 10, 2358–2362 (1993).

    Article  ADS  Google Scholar 

  7. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).

    Article  ADS  Google Scholar 

  8. Fallert, J. et al. Co-existence of strongly and weakly localized random laser modes. Nature Photon. 3, 279–282 (2009).

    Article  ADS  Google Scholar 

  9. Wiersma, D. S. Laser physics: random lasers explained? Nature Photon. 3, 246–248 (2009).

    Article  ADS  Google Scholar 

  10. Cao, H. et al. Spatial confinement of laser light in active random media. Phys. Rev. Lett. 84, 5584–5587 (2000).

    Article  ADS  Google Scholar 

  11. Wiersma, D. S. & Cavalieri, S. A temperature tunable random laser. Nature 414, 708–709 (2001).

    Article  ADS  Google Scholar 

  12. Gottardo, S. et al. Resonance-driven random laser. Nature Photon. 2, 429–432 (2008).

    Article  Google Scholar 

  13. Milner, V. & Genack, A. Z. Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization. Phys. Rev. Lett. 94, 073901 (2005).

    Article  ADS  Google Scholar 

  14. Rayleigh Lord ( Strutt, J. W. ). On the transmission of light through an atmosphere containing small particles in suspension and on the origin of the blue sky. Philos. Mag. 47, 375–384 (1899).

    Article  Google Scholar 

  15. Senior, J. Optical Fibre Communications: Principles and Practice 3rd edn (Prentice Hall, 2008).

    Google Scholar 

  16. Stolen, R. H., Ippen, E. P. & Tynes, A. R. Raman oscillation in glass optical waveguide. Appl. Phys. Lett. 20, 62–64 (1972).

    Article  ADS  Google Scholar 

  17. Ravet, G., Fotiadi, A. A., Blondel, M. & Megret, P. Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback. Electron. Lett. 40, 528–529 (2004).

    Article  Google Scholar 

  18. Chernikov, S. V., Zhu, Y., Taylor, J. R. & Gapontsev, V. P. Supercontinuum self-Q-switched ytterbium fibre laser. Opt. Lett. 22, 298–300 (1997).

    Article  ADS  Google Scholar 

  19. Fotiadi, A. A. & Kiyan, R. V. Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber. Opt. Lett. 23, 1805–1807 (1998).

    Article  ADS  Google Scholar 

  20. Fotiadi, A. A., Mégret, P. & Blondel, M. Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror. Opt. Lett. 29, 1078–1080 (2004).

    Article  ADS  Google Scholar 

  21. Babin, S. A. et al. Turbulent broadening of optical spectra in ultralong Raman fibre lasers. Phys. Rev. A 77, 033803 (2008).

    Article  ADS  Google Scholar 

  22. Ania-Castañón, J. D. et al. Ultralong Raman fibre lasers as virtually lossless optical media. Phys. Rev. Lett. 96, 023902 (2006).

    Article  ADS  Google Scholar 

  23. Imam, H. Metrology: broad as a lamp, bright as a laser. Nature Photon. 2, 26–28 (2008).

    Article  ADS  Google Scholar 

  24. Herrmann, J. & Wilhelmi, B. Mirrorless laser action by randomly distributed feedback in amplifying disordered media with scattering centers. Appl. Phys. B 66, 305–312 (1998).

    Article  ADS  Google Scholar 

  25. Türeci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).

    Article  ADS  Google Scholar 

  26. Zakharov, V. E., L'vov, V. S. & Falkovich, G. E. Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer-Verlag, 1992).

    Book  Google Scholar 

  27. Frazao, O., Correia, C., Santos, J. L. & Baptista, J. M. Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement. Meas. Sci. Technol. 20, 045203 (2009).

    Article  ADS  Google Scholar 

  28. Han, Y.-G., Moon, D. S., Chung, Y. & Lee, S. B. Flexibly tunable multiwavelength Raman fibre laser based on symmetrical bending method. Opt. Express 13, 6330–6335 (2005).

    Article  ADS  Google Scholar 

  29. Karpov, V. et al. Cascaded pump delivery for remotely pumped erbium doped fiber amplifiers. Proceedings of the SUBOPTIC Conference, We 8.8 (2004).

  30. Juarez, J. C., Maier, E. W., Kyoo, N. C. & Taylor, H. F. Distributed fibre-optic intrusion sensor system. J. Lightwave Technol. 23, 2081–2087 (2005).

    Article  ADS  Google Scholar 

Download references


The authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC), The Royal Society, the Russian Ministry of Science and Education and the Spanish Ministry of Science and Innovation (grant no. TEC2008-05791).

Author information

Authors and Affiliations



S.K.T. initiated the study. A.E.E., S.I.K., D.V.C. and V.K. assembled the set-up and performed the measurements. E.V.P., S.K.T. and J.D.A. conducted the analytical analysis. J.D.A. conducted the numerical simulations. S.K.T., S.A.B. and P.H. guided the theoretical and experimental investigations. S.K.T., S.A.B., A.E.E., D.V.C., J.D.A., P.H. and E.V.P. analysed data. S.K.T. and S.A.B. wrote the manuscript.

Corresponding author

Correspondence to Sergei K. Turitsyn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Turitsyn, S., Babin, S., El-Taher, A. et al. Random distributed feedback fibre laser. Nature Photon 4, 231–235 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing