Heralded noiseless linear amplification and distillation of entanglement



Signal amplification is ubiquitous in the control of physical systems, and the ultimate performance limit of amplifiers is set by quantum physics. Increasing the amplitude of an unknown quantum optical field, or any harmonic oscillator state, must introduce noise1. This linear amplification noise prevents perfect copying of the quantum state2, enforces quantum limits on communications and metrology3, and is the mechanism preventing the increase of entanglement via local operations. Non-deterministic versions of ideal cloning4 and local entanglement increase (distillation)5 are allowed, suggesting the possibility of non-deterministic noiseless linear amplification. Here we introduce, and experimentally demonstrate, such a noiseless linear amplifier for quantum states of the optical field, and use it for distillation of field-mode entanglement. This simple but powerful circuit enables practical devices for enhancing quantum technologies. The idea of noiseless amplification unifies approaches to cloning and distillation, and will find applications in quantum metrology and communications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design and realization of the noiseless linear amplifier.
Figure 2: Gain and coherence measurements for an amplifier stage.


  1. 1

    Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    ADS  Article  Google Scholar 

  2. 2

    Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    ADS  Article  Google Scholar 

  3. 3

    Bachor, H.-A. & Ralph, T. C. A Guide to Experiments in Quantum Optics 2nd edn (Wiley-VCH, 2004).

    Google Scholar 

  4. 4

    Duan, L.-M. & Guo, G.-C. Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999–5002 (1998).

    ADS  Article  Google Scholar 

  5. 5

    Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    ADS  Article  Google Scholar 

  6. 6

    Furusawa, A. et al. Unconditional quantum teleportation. Science, 282, 706–709 (1998).

    ADS  Article  Google Scholar 

  7. 7

    Braunstein, S. L. & Kimble, H. J. Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    Ralph, T. C. & Huntington, E. H. Unconditional continuous variable dense coding. Phys. Rev. A 66, 042321 (2002).

    ADS  Article  Google Scholar 

  9. 9

    Grosshans, F. Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002).

    ADS  Article  Google Scholar 

  10. 10

    Silberhorn, Ch., Ralph, T. C., Lütkenhaus, N. & Leuchs, G. Continuous variable key distribution—beating the 3 dB loss limit. Phys. Rev. Lett. 89, 167901 (2002).

    ADS  Article  Google Scholar 

  11. 11

    Dowling, J. P. Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125143 (2008).

    Article  Google Scholar 

  12. 12

    Pegg, D. T., Phillips, L. S. & Barnett S. M. Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604–1606 (1998).

    ADS  Article  Google Scholar 

  13. 13

    Babichev, S. A., Ries, J. & Lvovsky, A. I. Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon. Europhys. Lett. 64, 1–7 (2003).

    ADS  Article  Google Scholar 

  14. 14

    Mølmer, K. Optical coherence: a convenient fiction. Phys. Rev. A 55, 3195–3203 (1997).

    ADS  Article  Google Scholar 

  15. 15

    Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).

    ADS  Article  Google Scholar 

  17. 17

    Ralph, T. C. & Lund, A. P. Nondeterministic noiseless linear amplification of quantum systems. in Proceedings of 9th International Conferenceon on Quantum Communication Measurement and Computing (ed. Lvovsky, A.) 155–160 (AIP, 2009).

    Google Scholar 

  18. 18

    Browne, D. E., Eisert, J., Scheel, S. & Plenio, M. B. Driving non-Gaussian to Gaussian states with linear optics. Phys. Rev. A 67, 062320 (2003).

    ADS  Article  Google Scholar 

  19. 19

    Lund, A. P. & Ralph, T. C. Continuous-variable entanglement distillation over a general lossy channel. Phys. Rev. A 80, 032309 (2009).

    ADS  Article  Google Scholar 

  20. 20

    Hage, B. et al. Preparation of distilled and purified continuous-variable entangled states. Nature Phys. 4, 915–918 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Dong, R. et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys. 4, 919–923 (2008).

    ADS  Article  Google Scholar 

  22. 22

    Takahashi, H. et al. Entanglement distillation from Gaussian input states. Nature Photon. 4, 178–181 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Andersen, U. L., Josse, V. & Leuchs, G. Unconditional quantum cloning of coherent states with linear optics. Phys. Rev. Lett. 94, 240503 (2005).

    ADS  Article  Google Scholar 

  24. 24

    Higgins, B. L. et al. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).

    ADS  Article  Google Scholar 

Download references


The authors thank E.H. Huntington and B.L. Higgins for useful discussions. This work was supported by the Australian Research Council.

Author information




T.C.R. devised the protocol. T.C.R., A.P.L. and N.W. performed the theoretical calculations. G.J.P. and T.C.R. devised the experiment. G.J.P. and G.Y.X. designed the experiment. G.Y.X. built and characterized the experiment, and collected the data. G.Y.X. and G.J.P. analysed the data. All authors contributed substantially to the manuscript.

Corresponding author

Correspondence to G. J. Pryde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 539 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiang, G., Ralph, T., Lund, A. et al. Heralded noiseless linear amplification and distillation of entanglement. Nature Photon 4, 316–319 (2010). https://doi.org/10.1038/nphoton.2010.35

Download citation

Further reading