Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Directional control of light by a nano-optical Yagi–Uda antenna

Abstract

The plasmon resonance of metal nanoparticles can direct light from optical emitters in much the same way that radiofrequency antennas direct the emission from electrical circuits. Recently, rapid progress has been made in the realization of single-element antennas for optical waves1,2,3,4,5,6,7,8,9,10,11,12. Because most of these devices are designed to optimize the local near-field coupling between the antenna and an emitter, the possibility of modifying the spatial radiation pattern has not yet received as much attention13,14. In the radiofrequency regime, a typical antenna design for high directivity is the Yagi–Uda antenna, which essentially consists of a one-dimensional array of antenna elements driven by a single feed element. By fabricating a corresponding array of nanoparticles, similar radiation patterns can be obtained in the optical regime15,16,17,18. Here, we present the experimental demonstration of directional control of radiation from a nano-optical Yagi–Uda antenna composed of appropriately tuned gold nanorods.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Typical geometry of a five-element RF Yagi–Uda antenna.
Figure 2: Properties of the antenna elements and the measurement set-up.
Figure 3: Radiation patterns of two-element antennas.
Figure 4: Measured (solid circles) and predicted (open circles) radiation patterns of the five-element Yagi–Uda antenna.

References

  1. 1

    Crozier, K. B., Sundaramurthy, A., Kino, G. S. & Quate, C. F. Optical antennas: resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003).

    ADS  Article  Google Scholar 

  2. 2

    Fromm, D. P., Sundaramurthy, A., Schuck, P. J., Kino, G. & Moerner, W. E. Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004).

    ADS  Article  Google Scholar 

  3. 3

    Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    ADS  Article  Google Scholar 

  4. 4

    Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    ADS  Article  Google Scholar 

  5. 5

    Aizpurua, J. et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005).

    ADS  Article  Google Scholar 

  6. 6

    Farahani, J. N., Pohl, D. W., Eisler, H.-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    ADS  Article  Google Scholar 

  7. 7

    Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    ADS  Article  Google Scholar 

  8. 8

    Sundaramurthy, A. et al. Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355–360 (2006).

    ADS  Article  Google Scholar 

  9. 9

    Fromm, D. P. et al. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J. Chem. Phys. 124, 061101 (2006).

    ADS  Article  Google Scholar 

  10. 10

    Muskens, O. L., Giannini, V., Sánchez-Gil, J. A. & Rivas, J. G. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett. 7, 2871–2875 (2007).

    ADS  Article  Google Scholar 

  11. 11

    Bakker, R. M. et al. Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett. 92, 043101 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Bakker, R. M. et al. Nanoantenna array-induced fluorescence enhancement and reduced lifetimes. New J. Phys. 10, 125022 (2008).

    ADS  Article  Google Scholar 

  13. 13

    Taminiau, T. H., Moerland, R. J., Segerink, F. B., Kuipers, L. & van Hulst, N. F. λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7, 28–33 (2007).

    ADS  Article  Google Scholar 

  14. 14

    Taminiau, T. H. et al. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Article  Google Scholar 

  15. 15

    Li, J., Salandrino, A. & Engheta, N. Shaping light beams in the nanometer scale: A Yagi–Uda nanoantenna in the optical domain. Phys. Rev. B 76, 245403 (2007).

    ADS  Article  Google Scholar 

  16. 16

    Hofmann, H. F., Kosako, T. & Kadoya, Y. Design parameters for a nano-optical Yagi–Uda antenna. New J. Phys. 9, 217 (2007).

    ADS  Article  Google Scholar 

  17. 17

    Pellegrini, G., Mattei, G., Mazzoldi, P. Tunable, directional and wavelength selective plasmonic nanoantenna arrays. Nanotechnology, 20, 065201 (2009).

    ADS  Article  Google Scholar 

  18. 18

    Koenderink, A. F. Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett. 9, 4228–4233 (2009).

    ADS  Article  Google Scholar 

  19. 19

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  20. 20

    Hulet, R. G., Hilfer, E. S. & Kleppner, D. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 55, 2137–2140 (1985).

    ADS  Article  Google Scholar 

  21. 21

    Björk, G., Machida, S., Yamamoto, Y. & Igeta, K. Modification of spontaneous emission rate in planar dielectric microcavity structures. Phys. Rev. A 44, 669–681 (1991).

    ADS  Article  Google Scholar 

  22. 22

    Ogawa, S., Imada, M., Yoshimoto, S., Okano, M. & Noda, S. Control of light emission by 3D photonic crystals. Science 305, 227–229 (2004).

    ADS  Article  Google Scholar 

  23. 23

    Balanis, C. A. Antenna Theory Analysys and Design 3rd edn, 577 (John Wiley & Sons, 2005).

    Google Scholar 

  24. 24

    Craig, F. B. & Donald, R. H. Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

    Google Scholar 

  25. 25

    Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by the Grant-in-Aid Scientific Research from the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Contributions

All authors conceived and designed the experiment. T.K. prepared the samples and carried out the measurement. All authors participated in the analysis of the data and in the writing of the paper.

Corresponding author

Correspondence to Yutaka Kadoya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kosako, T., Kadoya, Y. & Hofmann, H. Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photon 4, 312–315 (2010). https://doi.org/10.1038/nphoton.2010.34

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing