Soliton–similariton fibre laser

Abstract

Rapid progress in passively mode-locked fibre lasers1,2,3,4,5,6 is currently driven by the recent discovery of new mode-locking mechanisms, namely, the self-similarly evolving pulse (similariton)7 and the all-normal-dispersion (dissipative soliton) regimes8,9. These are fundamentally different from the previously known soliton10 and dispersion-managed soliton (stretched-pulse)11 regimes. Here, we report a fibre laser in which the mode-locked pulse evolves as a similariton in the gain segment and transforms into a regular soliton in the rest of the cavity. To our knowledge, this is the first observation of similaritons in the presence of gain, that is, amplifier similaritons, within a laser cavity. The existence of solutions in a dissipative nonlinear cavity comprising a periodic combination of two distinct nonlinear waves is novel and likely to be applicable to various other nonlinear systems. For very large filter bandwidths, our laser approaches the working regime of dispersion-managed soliton lasers; for very small anomalous-dispersion segment lengths it approaches dissipative soliton lasers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pulse evolution in the laser.
Figure 2: Numerical simulation results.
Figure 3: Experimental set-up.
Figure 4: Comparison of experimental and numerical results for operation at βnet(2) = 0.0136 ps2.
Figure 5: Spectral breathing ratio of the laser.

References

  1. 1

    Buckley, J. R., Wise, F. W., Ilday, F. Ö. & Sosnowski, T. Femtosecond fiber lasers with pulse energies above 10 nJ. Opt. Lett. 30, 1888–1890 (2005).

    ADS  Article  Google Scholar 

  2. 2

    Kieu, K., Renninger, W. H., Chong, A. & Wise, F. W. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 34, 593–595 (2009).

    ADS  Article  Google Scholar 

  3. 3

    Ruehl, A., Hundertmark, H., Wandt, D., Fallnich, C. & Kracht, D. 0.7 W all-fiber erbium oscillator generating 64 fs wave breaking-free pulse. Opt. Express 13, 6305–6309 (2005).

    ADS  Article  Google Scholar 

  4. 4

    Ortaç, B. et al. High-energy femtosecond dispersion compensation free fiber laser. Opt. Express 15, 10725–10732 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Wise, F. W., Chong, A. & Renninger, W. H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photon. Rev. 2, 58–73 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Ruehl, A., Wandt, D., Morgner, U. & Kracht, D. Normal dispersive ultrafast fiber oscillator. IEEE J. Sel. Top. Quantum Electron. 15, 170–181 (2009).

    ADS  Article  Google Scholar 

  7. 7

    Ilday, F. Ö., Buckley, J. R., Clark, W. G. & Wise, F. W. Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92, 213902 (2004).

    ADS  Article  Google Scholar 

  8. 8

    Chong, A., Buckley, J., Renninger, W. & Wise, F. All-normal-dispersion femtosecond fiber laser. Opt. Express 14, 10095–10100 (2006).

    ADS  Article  Google Scholar 

  9. 9

    Renninger, W. H., Chong, A. & Wise, F. W. Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A 77, 023814 (1991).

    ADS  Article  Google Scholar 

  10. 10

    Duling III, I. N. Subpicosecond all-fibre erbium laser. Electron. Lett. 27, 544–545 (1991)

    Article  Google Scholar 

  11. 11

    Tamura, K., Ippen, E. P. & Haus, H. A. Pulse dynamics in stretched-pulse fiber lasers. Appl. Phys. Lett. 67, 158–160 (1995).

    ADS  Article  Google Scholar 

  12. 12

    Newbury, N. R. & Swann, W. C. Low-noise fiber-laser frequency combs (invited). J. Opt. Soc. Am. B 24, 1756–1770 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Schibli, T. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nature Photon. 2, 355–359 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Shah, L., Fermann, M. E., Dawson, J. W. & Barty, C. P. J. Micromachining with a 50 W, 50 µJ, sub-picosecond fiber laser system. Opt. Express 14, 12546–12551 (2006).

    ADS  Article  Google Scholar 

  15. 15

    Hoffmann, M. C. et al. Fiber laser pumped high average power single-cycle terahertz pulse source. Appl. Phys. Lett. 93, 141107 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Nelson, L. E., Fleischer, S. B., Lenz, G. & Ippen, E. P. Efficient frequency doubling of a femtosecond fiber laser. Opt. Lett. 21, 1759–1761 (1996).

    ADS  Article  Google Scholar 

  17. 17

    Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

    ADS  Article  Google Scholar 

  18. 18

    Kivshar, Y. & Agrawal, G. P. Optical Solitons: from Fibers to Photonic Crystals (Academic Press, 2003).

    Google Scholar 

  19. 19

    Dudley, J. M., Finot, C., Richardson, D. J. & Millot, G. Self-similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Kruglov, V. I., Peacock, A. C., Dudley, J. M. & Harvey, J. D. Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers. Opt. Lett. 25, 1753–1755 (2000).

    ADS  Article  Google Scholar 

  21. 21

    Kruglov, V. I., Peacock, A. C., Harvey, J. D. & Dudley, J. M. Self-similar propagation of parabolic pulses in normal-dispersion fibre amplifiers. J. Opt. Soc. Am. B 19, 461–469 (2002).

    ADS  Article  Google Scholar 

  22. 22

    Kruglov, V. I. & Harvey, J. D. Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters. J. Opt. Soc. Am. B 23, 2541–2550 (2006).

    ADS  Article  Google Scholar 

  23. 23

    Fermann, M. E., Kruglov, V. I., Thomsen, B. C., Dudley, J. M. & Harvey, J. D. Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84, 6010–6013 (2000).

    ADS  Article  Google Scholar 

  24. 24

    Anderson, D., Desaix, M., Karlsson, M., Lisak, M. & Quiroga-Teixeiro, M. L. Wave-breaking-free pulses in nonlinear-optical fibers. J. Opt. Soc. Am. B 10, 1185–1190 (1993).

    ADS  Article  Google Scholar 

  25. 25

    Tamura, K. & Nakazawa, M. Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers. Opt. Lett. 21, 68–70 (1996).

    ADS  Article  Google Scholar 

  26. 26

    Peacock, A. C. et al. Generation and interaction of parabolic pulses in high gain fiber amplifiers and oscillators. Conf. Opt. Fiber Commun. 2000, Technical Digest, Paper WP4-1.

  27. 27

    Nicholson, J. W., Jasapara, J., Rudolph, W., Omenetto, F. G. & Taylor, A. J. Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements. Opt. Lett. 24, 1774–1776 (1999).

    ADS  Article  Google Scholar 

  28. 28

    Finot, C. & Millot, G. Synthesis of optical pulses by use of similaritons. Opt. Express 12, 5104–5109 (2004).

    ADS  Article  Google Scholar 

  29. 29

    Noske, D. U. & Taylor, J. R. Spectral and temporal stabilisation of a diode-pumped ytterbium-erbium fibre soliton laser. Electron. Lett. 29, 2200–2202 (1993).

    Article  Google Scholar 

  30. 30

    Hofer, M., Fermann, M. E., Harberl, F., Ober, M. H. & Schmidt, A. J. Mode locking with cross-phase and self-phase modulation. Opt. Lett. 16, 502–504 (1991).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) grant no. 106G089, Marie Curie International Research Grant (IRG) grant no. 046585, EU 7th Framework project UNAM-REGPOT grant no. 203953, Bilkent University Internal Research Funds, and the Distinguished Young Scientist award of the Turkish Academy of Sciences (TÜBA). The authors would like to thank O. Aytür for critical reading of the manuscript.

Author information

Affiliations

Authors

Contributions

B.O. and C.Ü. conducted the experiments and analysed the data. B.O. performed the numerical simulations. F.Ö.I. and B.O. wrote the paper with contributions from C.Ü.

Corresponding author

Correspondence to F. Ömer Ilday.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oktem, B., Ülgüdür, C. & Ilday, F. Soliton–similariton fibre laser. Nature Photon 4, 307–311 (2010). https://doi.org/10.1038/nphoton.2010.33

Download citation

Further reading