Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution


Determining the precise shape of the emission profile across the thickness of the active layer in organic light-emitting diodes is of importance for device optimization and assessing the validity of advanced device models. We present a comprehensive method for accurately measuring the shape of the emission profile, the intrinsic spectrum of emitting dipoles and the emitting dipole orientation. The method uses a microcavity light outcoupling model, which includes self-absorption and optical anisotropy, and is based on the full wavelength, angle and polarization resolved emission intensity. Application to blue (polyfluorene-based) and orange-red (NRS-PPV) polymer organic light-emitting diodes reveals a peaked shape of the emission profile. A significant voltage and layer thickness dependence of the peak positions is observed, with a demonstrated resolution better than 5 nm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic illustrating the measurement of the shape of the emission profile in an OLED.
Figure 2: Angular dependence of the electroluminescence spectra for PF-TAA based OLEDs.
Figure 3: Comparison of measured and modelled spectra.
Figure 4: Position-dependent emission intensities.
Figure 5: Voltage and layer thickness dependence of the emission profile.
Figure 6: Consistency and resolution.


  1. 1

    D'Andrade, B. W. & Forrest, S. R. White organic light-emitting devices for solid-state lighting. Adv. Mater. 16, 1585–1595 (2004).

    Article  Google Scholar 

  2. 2

    Sun, Y. et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006).

    ADS  Article  Google Scholar 

  3. 3

    Schwartz, G., Pfeiffer, M., Reineke, S., Walzer, K. & Leo, K. Harvesting triplet excitons from fluorescent blue emitters in white organic light-emitting diodes. Adv. Mater. 19, 3672–3676 (2007).

    Article  Google Scholar 

  4. 4

    Jeon, S. O., Yook, K. S., Joo, C. W. & Lee, J. Y. Highly efficient single-layer phosphorescent white organic light-emitting diodes using a spirofluorene-based host material. Opt. Lett. 34, 407–409 (2009).

    ADS  Article  Google Scholar 

  5. 5

    Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–239 (2009).

    ADS  Article  Google Scholar 

  6. 6

    Gustafsson, G. et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477–479 (1992).

    ADS  Article  Google Scholar 

  7. 7

    Wang, G.-F., Tao, X.-M. & Wang, R.-X. Flexible organic light-emitting diodes with a polymeric nanocomposite anode. Nanotechnology 19, 145201 (2008).

    ADS  Article  Google Scholar 

  8. 8

    D'Andrade, B. W. et al. Realizing white phosphorescent 100 lm/W OLED efficacy. Proc. SPIE 7051, 70510Q (2008).

    Article  Google Scholar 

  9. 9

    Lu, M.-H. & Sturm, J. C. Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment. J. Appl. Phys. 91, 595–604 (2002).

    ADS  Article  Google Scholar 

  10. 10

    Neyts, K. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998).

    ADS  Article  Google Scholar 

  11. 11

    Bulović, V. et al. Weak microcavity effects in organic light-emitting devices. Phys. Rev. B 58, 3730–3740 (1998).

    ADS  Article  Google Scholar 

  12. 12

    Chen, X.-W., Choy, W.C.H. & He, S. Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes. J. Displ. Technol. 3, 110–117 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Nowy, S., Krummacher, B. C., Frischeisen, J., Reinke, N. A. & Brütting, W. Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency. J. Appl. Phys. 104, 123109 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Malliaras, G. G. & Scott, J. C. The roles of injection and mobility in organic light emitting diodes. J. Appl. Phys. 83, 5399–5403 (1998).

    ADS  Article  Google Scholar 

  15. 15

    Wan, W. M. V., Friend, R. H. & Greenham, N. C. Modelling of interference effects in anisotropic conjugated polymer devices. Thin Solid Films 363, 310–313 (2000).

    ADS  Article  Google Scholar 

  16. 16

    Kim, J.-S., Ho, P. K. H., Greenham, N. C. & Friend, R. H. Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations. J. Appl. Phys. 88, 1073–1081 (2000).

    ADS  Article  Google Scholar 

  17. 17

    Granlund, T., Pettersson, L. A. A. & Inganäs, O. Determination of the emission zone in a single-layer polymer light-emitting diode through optical measurements. J. Appl. Phys. 89, 5897–5902 (2001).

    ADS  Article  Google Scholar 

  18. 18

    Leger, J. M. et al. Thickness-dependent changes in the optical properties of PPV- and PF-based polymer light emitting diodes. Phys. Rev. B 68, 054209 (2003).

    ADS  Article  Google Scholar 

  19. 19

    Roberts, M. Optical modeling and efficiency optimization of P-OLED devices. Proceedings of the Organic Electronics Conference and Exhibition '06 1 (2006).

  20. 20

    Ruhstaller, B. et al. Optoelectronic OLED modeling for device optimization and analysis. SID Symposium Digest of Technical Papers 38, 1686 (2007).

    Article  Google Scholar 

  21. 21

    Gather, M. C., Flämmich, M., Danz, N., Michaelis, D. & Meerholz, K. Measuring the profile of the emission zone in polymeric organic light-emitting diodes. Appl. Phys. Lett. 94, 263301 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Coehoorn, R. et al. Measurement and modelling of carrier transport and exciton formation in blue polymer light emitting diodes. Proc. SPIE 6192, 61920O (2006).

    Article  Google Scholar 

  23. 23

    Markov, D. E. & Blom, P. W. M. Exciton quenching in poly(phenylene vinylene) polymer light-emitting diodes. Appl. Phys. Lett. 87, 233511 (2005).

    ADS  Article  Google Scholar 

  24. 24

    Van der Vaart, N. C. et al. Towards large-area full-color active-matrix printed polymer OLED television. J. Soc. Inf. Disp. 13, 9–16 (2005).

    Article  Google Scholar 

  25. 25

    Greiner, H. & Martin, O. J. F. Numerical modelling of light emission and propagation in (organic) LEDs with the Green's tensor. Proc. SPIE 5214, 248–259 (2004).

    ADS  Article  Google Scholar 

  26. 26

    Kahn, R. U. A., Bradley, D. D. C., Webster, M. A., Auld, J. L. & Walker, A. B. Degradation in blue-emitting conjugated polymer diodes due to loss of ohmic hole injection. Appl. Phys. Lett. 84, 921–923 (2004).

    ADS  Article  Google Scholar 

  27. 27

    De Kok, M. M. et al. Modification of PEDOT:PSS as hole injection layer in polymer LEDs. Phys. Stat. Sol. A 201, 1342–1359 (2004).

    ADS  Article  Google Scholar 

  28. 28

    Van Mensfoort, S. L. M., Vulto, S. I. J., Janssen, R. A. J. & Coehoorn, R. Hole transport in polyfluorene-based sandwich-type devices: quantitative analysis of the role of energetic disorder. Phys. Rev. B 78, 085208 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Van Mensfoort, S. L. M., Billen, J., Vulto, S. I. J., Janssen, R. A. J. & Coehoorn, R. Electron transport in polyfluorene-based sandwich-type devices: quantitative analysis of the role of energetic disorder and electron traps. Phys. Rev. B 80, 033202 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Becker, H., Burns, S. E. & Friend, R. H. Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers. Phys. Rev. B 56, 1893–1905 (1997).

    ADS  Article  Google Scholar 

  31. 31

    Yang, C.Y, Hide, F., Diaz-Garcia, M. A., Heeger, A. J. & Cao, Y. Microstructure of thin films of photoluminescent semiconducting polymers. Polymer 39, 2299–2304 (1998).

    Article  Google Scholar 

  32. 32

    Cao, Y., Parker, I. D., Yu, G., Zhang, C. & Heeger, A. J. Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature 397, 414–417 (1999).

    ADS  Article  Google Scholar 

  33. 33

    Wilson, J. S. et al. Spin-dependent exciton formation in π-conjugated compounds. Nature 413, 828–831 (2001).

    ADS  Article  Google Scholar 

  34. 34

    Segal, M., Baldo, M. A., Holmes, R. J., Forrest, S. R. & Soos, Z. G. Exciton singlet–triplet ratios in molecular and polymeric organic materials. Phys. Rev. B 68, 075211 (2003).

    ADS  Article  Google Scholar 

  35. 35

    Rothe, C., King, S. M. & Monkman, A. P. Direct measurement of the singlet generation yield in polymer light-emitting diodes. Phys. Rev. Lett. 97, 076602 (2006).

    ADS  Article  Google Scholar 

  36. 36

    Nowy, S., Reinke, N. A., Frischeisen, J. & Brütting, W. Light extraction and optical loss mechanisms in organic light-emitting diodes. Proc. SPIE 6999, 69992V (2008).

    ADS  Article  Google Scholar 

  37. 37

    Tomaš, M. S. & Lenac, Z. Decay of excited molecules in absorbing planar cavities. Phys. Rev. A 56, 4197–4206 (1997).

    ADS  Article  Google Scholar 

  38. 38

    Tomaš, M. S. Local-field corrections to the decay rate of excited molecules in absorbing cavities: the Onsager model. Phys. Rev. A 63, 053811 (2001).

    ADS  Article  Google Scholar 

  39. 39

    Wan, W. M. V., Greenham, N. C. & Friend, R. H. Interference effects in anisotropic optoelectronic devices. J. Appl. Phys. 87, 2542–2547 (2000).

    ADS  Article  Google Scholar 

Download references


The authors wish to thank L.W.G. Stofmeel for assistance with the measurements on the Autronic system, A.J.M. van den Biggelaar for device preparation, A.P.M. de Win for carrying out the refractive index measurements, M. Kaiser for carrying out the TEM measurements, and Sumation Co., Ltd for the supply of LumationTM Blue Series polymers. This research has received funding from NanoNed, a national nanotechnology programme coordinated by the Dutch Ministry of Economic Affairs (contribution S.L.M.v.M.), from the Dutch Polymer Institute (project no. 518, contribution M.C.), from the European Commission's Marie Curie Fellowship program (IST-2004-27580 SPRINT project, contribution M.B.), and from the European Community's Seventh Framework programme under grant agreement no. 213708 (AEVIOM, contribution R.C.).

Author information




S.L.M.v.M. and M.C. contributed equally to this work. They designed and carried out the experiment, carried out the analysis, and contributed to the writing of the paper. M.M. contributed to the development of the analysis method. D.W. contributed to the experiments and analysis of NRS-PPV OLEDs. M.B. contributed to the experiments on PF-TAA OLEDs. H.G. developed the Lightex program. R.A.J.J. contributed by useful discussions. R.C. supervised the work and contributed to the development of the analysis method and to the writing of the paper.

Corresponding authors

Correspondence to M. Carvelli or R. Coehoorn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Mensfoort, S., Carvelli, M., Megens, M. et al. Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution. Nature Photon 4, 329–335 (2010).

Download citation

Further reading