Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm

Abstract

Vacuum-ultraviolet (VUV) high-resolution absorption spectroscopy is a unique tool for the study of gas-phase atomic and molecular electronic structure. To date, it has been performed by using lasers or synchrotron radiation-based grating spectrometers, but none of these techniques can offer simultaneous high resolution, wavelength accuracy and broad tunability. The only technique combining these three important features is Fourier-transform spectroscopy, but this is limited to the mid-UV range (down to 140 nm; ref. 1) because of a lack of beamsplitters. Here, we present a new instrument based on a wavefront-division scanning interferometer, applied for the first time to the VUV range. This instrument, coupled to the DESIRS beamline at synchrotron SOLEIL, covers a broad range of wavelengths (typically 7%, adjustable in the 250–40 nm range), a resolving power of 1 × 106, an extrinsic absolute wavelength accuracy of 1 × 10−7 and a high signal-to-noise ratio.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VUV scanning wavefront-division interferometer.
Figure 2: Krypton absorption spectrum showing the Rydberg series converging towards the 4p−1 (2P3/2) and (2P1/2) ionization limits.
Figure 3: Helium photoabsorption cross-section using the free expansion jet set-up.

Similar content being viewed by others

References

  1. Thorne, A. High resolution Fourier transform spectrometry in the visible and ultraviolet regions. J. Anal. At. Spectrom. 13, 407–411 (1998).

    Article  ADS  Google Scholar 

  2. Eikema, K. S. E. & Ubachs, W. Handbook of High Resolution Spectroscopy. Precision Laser Spectroscopy in the Extreme Ultraviolet (eds Quack, M. & Merkt, F.) (John Wiley & Sons, 2010).

    Google Scholar 

  3. Rupper, P. & Merkt, F. Intense narrow-bandwidth extreme ultraviolet laser system tunable up to 20 eV. Rev. Sci. Instrum. 75, 613–622 (2004).

    Article  ADS  Google Scholar 

  4. Ubachs, W., Eikema, K. S. E., Hogervorst, W. & Cacciani, P. C. Narrow-band tunable extreme-ultraviolet laser source for lifetime measurements and precision spectroscopy. J. Opt. Soc. Am. B 14, 2469–2476 (1997).

    Article  ADS  Google Scholar 

  5. Paul, Th. A. & Merkt, F. High-resolution spectroscopy of xenon using a tunable Fourier-transform-limited all-solid-state vacuum-ultraviolet laser system. J. Phys. B. 38, 4145–4154 (2005).

    Article  ADS  Google Scholar 

  6. Trickl, T., Kung, A. H. & Lee, Y. T. Krypton atom and testing the limits of extreme-ultraviolet tunable-laser spectroscopy. Phys. Rev. A 75, 022501 (2007).

    Article  ADS  Google Scholar 

  7. Nahon, L. et al. Very high spectral resolution obtained with SU5: a vacuum ultraviolet undulator-based beamline at Super-ACO. Rev. Sci. Instrum. 72, 1320–1329 (2001).

    Article  ADS  Google Scholar 

  8. Reichardt, G. et al. A 10 m-normal incidence monochromator at the quasi-periodic undulator U125-2 at BESSY II. Nucl. Instrum. Methods A 467, 462–465 (2001).

    Article  ADS  Google Scholar 

  9. Ito, K. et al. High-resolution VUV spectroscopic facility at the Photon Factory. Appl. Opt. 25, 837–847 (1986).

    Article  ADS  Google Scholar 

  10. Pickering, J. C. High resolution Fourier transform spectroscopy with the Imperial College (IC) UV-FT spectrometer, and its applications to astrophysics and atmospheric physics: a review. Vib. Spectrosc. 29, 27–43 (2002).

    Article  Google Scholar 

  11. Strong, J. & Vanasse, G. A. Lamellar grating far-infrared interferometer. J. Opt. Soc. Am. 50, 113–118 (1960).

    Article  ADS  Google Scholar 

  12. Howells, M. R. et al. Toward a soft X-ray Fourier-transform spectrometer. Nucl. Instrum. Methods Phys. Res. A 347, 182–191 (1994).

    Article  ADS  Google Scholar 

  13. Polack, F., Joyeux, D., Svatoš, J. & Phalippou, D. Applications of wavefront division interferometers in soft X rays. Rev. Sci. Instrum. 66, 2180–2183 (1995).

    Article  ADS  Google Scholar 

  14. de Oliveira, N. et al. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: from the optical design to the first UV spectrum. Rev. Sci. Instrum. 80, 43101 (2009).

    Article  Google Scholar 

  15. DESIRS beamline website, www.synchrotron-soleil.fr/portal/page/portal/Recherche/LignesLumiere/DESIRS.

  16. Marcouille, O. et al. Design, construction and magnetic measurements of the HU640 (OPHELIE2) undulator dedicated to the DESIRS VUV beamline at SOLEIL. AIP Conf. Proc. 879, 311–314 (2007).

    Article  ADS  Google Scholar 

  17. Forman, M. L., Steel, W. H. & Vanasse, G. A. Correction of asymmetric interferograms obtained in Fourier spectroscopy, J. Opt. Soc. Am. 56, 59–61 (1966).

    Article  ADS  Google Scholar 

  18. Maeda, K., Ueda, K. & Ito, K. High-resolution measurement for photoabsorption cross sections in the autoionization regions of Ar, Kr and Xe. J. Phys. B 26, 1541–1555 (1993).

    Article  ADS  Google Scholar 

  19. Sommavilla, M., Hollenstein, U., Greetham, G. M. & Merkt, F. High-resolution laser absorption spectroscopy in the extreme ultraviolet J. Phys. B 35, 3901–3921 (2002).

    Article  ADS  Google Scholar 

  20. Brault, J. W. High precision Fourier transform spectrometry: the critical role of phase corrections. Mikrochim. Acta III, 215–227 (1987).

    Article  ADS  Google Scholar 

  21. Davis, S. P., Abrams, M. C. & Brault, J. W. Fourier Transform Spectrometry (Academic Press, 2001).

  22. Stark, G. et al. Oscillator strength and linewidth measurements of dipole-allowed transitions in 14N2 between 93.5 and 99.5 nm. J. Chem. Phys. 123, 214303 (2005).

    Article  ADS  Google Scholar 

  23. Glass-Maujean, M. et al. H2 superexcited states: experimental and theoretical characterization of their competing decay-channel fluorescence, dissociation, and ionization. Phys. Rev. Lett. 104, 183002 (2010).

    Article  ADS  Google Scholar 

  24. Reinhold, E. et al. Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of H2 spectra. Phys. Rev. Lett. 96, 151101 (2006).

    Article  ADS  Google Scholar 

  25. Eidelsberg, M. et al. Oscillator strengths and predissociation rates for Rydberg transitions in 12C16O, 13C16O, and 13C18O involving the E 1Π, B 1Σ+, and W 1Π state. Astrophys. J. 647, 1543–1548 (2006).

    Article  ADS  Google Scholar 

  26. Hansen, C. J. et al. Enceladus' water vapor plume. Science 311, 1422–1425 (2006).

    Article  ADS  Google Scholar 

  27. Kono, A. & Hattori, S. Accurate oscillator strengths for neutral helium. Phys. Rev. A 29, 2981–2988 (1984).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANR (Agence Nationale de la Recherche; grant 05-BLAN-0364). The authors acknowledge the invaluable skill of the Optical Surface and Component group from the Laboratoire Charles Fabry for fabrication of the optical parts and metrology. Warm thanks go to B. Pilette and J.-F. Gil for their contribution to the conception and mounting of the sample chamber, as well as M. Vervloet (Synchrotron SOLEIL) and K. Ito (Photon Factory, Tsukuba, Japan) for fruitful discussions on spectroscopic issues. The authors are also grateful to the general technical staff of the synchrotron SOLEIL facility.

Author information

Authors and Affiliations

Authors

Contributions

N.d.O., D.J., D.P. and J.C.R. designed and built the Fourier transform instrument. N.d.O., D.J. and L.N. designed the whole absorption facility set-up, including the beamline coupling and the sample chamber. N.d.O., M.R. and D.J. performed the experiments and analysed the data. L.N. supervised the scientific coherence of the Fourier transform project. N.d.O., D.J., L.N. wrote the manuscript.

Corresponding author

Correspondence to Nelson de Oliveira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, N., Roudjane, M., Joyeux, D. et al. High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm. Nature Photon 5, 149–153 (2011). https://doi.org/10.1038/nphoton.2010.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing