Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Making optical atomic clocks more stable with 10−16-level laser stabilization

Abstract

The superb precision of an atomic clock is derived from its stability. Atomic clocks based on optical (rather than microwave) frequencies are attractive because of their potential for high stability, which scales with operational frequency. Nevertheless, optical clocks have not yet realized this vast potential, due in large part to limitations of the laser used to excite the atomic resonance. To address this problem, we demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of 2 × 10−16. We use this laser as a stable optical source in a ytterbium optical lattice clock to resolve an ultranarrow 1 Hz linewidth for the 518 THz clock transition. With the stable laser source and the signal-to-noise ratio afforded by the ytterbium optical clock, we dramatically reduce key stability limitations of the clock, and make measurements consistent with a clock instability of 5 × 10−16.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Stable laser properties.
Figure 3: Optical clock performance.

References

  1. Udem, T. et al. Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. Phys. Rev. Lett. 86, 4996–4999 (2001).

    Article  ADS  Google Scholar 

  2. Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010).

    Article  ADS  Google Scholar 

  3. Bize, S. et al. Advances in atomic fountains. Compt. Rend. Phys. 5, 829–843 (2004).

    Article  ADS  Google Scholar 

  4. Dick, G. J. Local oscillator induced instabilities in trapped ion frequency standards. Proc. Precise Time and Time Interval Meeting 133–147 (1987).

  5. Santarelli, G. et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Trans. Ultra. Ferro. Freq. Cont. 45, 887–894 (1998).

    Article  Google Scholar 

  6. Itano, W. M. et al. Quantum projection noise—population fluctuations in 2-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    Article  ADS  Google Scholar 

  7. Ludlow, A. D. et al. Sr lattice clock at 1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805–1808 (2008).

    Article  ADS  Google Scholar 

  8. Lemke, N. D. et al. Spin-1/2 optical lattice clock. Phys. Rev. Lett. 103, 063001 (2009).

    Article  ADS  Google Scholar 

  9. Swallows, M. D. et al. Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1×10−16 inaccuracy. IEEE Trans. Ultra. Ferro. Freq. Cont. 57, 574–582 (2010).

    Article  Google Scholar 

  10. Numata, K., Kemery, A. & Camp, J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004).

    Article  ADS  Google Scholar 

  11. Nakagawa, N., Gretarsson, A., Gustafson, E. & Fejer, M. Thermal noise in half-infinite mirrors with nonuniform loss: a slab of excess loss in a half-infinite mirror. Phys. Rev. D 65, 102001 (2002).

    Article  ADS  Google Scholar 

  12. Young, B., Cruz, F., Itano, W. & Bergquist, J. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999).

    Article  ADS  Google Scholar 

  13. Millo, J. et al. Ultrastable lasers based on vibration insensitive cavities. Phys. Rev. A 79, 053829 (2009).

    Article  ADS  Google Scholar 

  14. Ludlow, A. D. et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15. Opt. Lett. 32, 641–643 (2007).

    Article  ADS  Google Scholar 

  15. Webster, S., Oxborrow, M. & Gill, P. Subhertz-linewidth Nd:YAG laser. Opt. Lett. 29, 1497–1499 (2004).

    Article  ADS  Google Scholar 

  16. Notcutt, M. et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers. Phys. Rev. A 73, 031804 (2006).

    Article  ADS  Google Scholar 

  17. Levin, Y. Internal thermal noise in the LIGO test masses: a direct approach. Phys. Rev. D 57, 659–663 (1998).

    Article  ADS  Google Scholar 

  18. Chou, C. W. et al. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  Google Scholar 

  19. Boyd, M. M. et al. Optical atomic coherence at the 1-second time scale. Science 314, 1430–1433 (2006).

    Article  ADS  Google Scholar 

  20. Oates, C. W. et al. Stable laser system for probing the clock transition at 578 nm in neutral ytterbium, in Proc. 2007 IEEE Int. Freq. Cont. Symp. 1274–1277 (IEEE, 2007).

  21. Westergaard, P. G., Lodewyck, J. & Lemonde, P. Minimizing the Dick effect in an optical lattice clock. IEEE Trans. Ultra. Ferro. Freq. Cont. 57, 623–628 (2010).

    Article  Google Scholar 

  22. Webster, S. A., Oxborrow, M. & Gill, P. Vibration insensitive optical cavity. Phys. Rev. A 75, 011801 (2007).

    Article  ADS  Google Scholar 

  23. Ma, L. S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical-frequency at 2 places — accurate cancellation of phase noise introduced by an optical-fiber or other time-varying path. Opt. Lett. 19, 1777–1779 (1994).

    Article  ADS  Google Scholar 

  24. Fox, R. W. Temperature analysis of low-expansion Fabry–Perot cavities. Opt. Express 17, 15023–15031 (2009).

    Article  ADS  Google Scholar 

  25. Legero, T., Kessler, T. & Sterr, U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors. J. Opt. Soc. Am. B 27, 914–919 (2010).

    Article  ADS  Google Scholar 

  26. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

    Article  ADS  Google Scholar 

  27. Katori, H., Takamoto, M., Pal'chikov, V. G. & Ovsiannikov, V. D. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91, 173005 (2003).

    Article  ADS  Google Scholar 

  28. Dawkins, S. T., McFerran, J. J. & Luiten, A. N. Considerations on the measurement of the stability of oscillators with frequency counters. IEEE Trans. Ultra. Ferro. Freq. Cont. 54, 918–925 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support regarding optical frequency comb measurements from S. Diddams, T. Fortier and M. Kirchner, optical cavity measurement and equipment loan from J. Bergquist, T. Rosenband and C. Chou, and useful discussions with J. Bergquist and G. Santarelli. The authors also thank L. Hollberg for design guidance and useful discussions. Y.Y.J. and L.S.M. acknowledge support from the National Basic Research Program of China (grant no. 2010CB922903) and the Science and Technology Commission of Shanghai Municipality (grant no. 07JC14019).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y.J., A.D.L., N.D.L., and J.A.S. carried out the laser frequency or optical clock measurements reported here. Y.Y.J. designed and constructed many aspects of the stable cavity system and made many of the laser frequency measurements. R.W.F. carried out thermal design simulations and measurements. A.D.L. and N.D.L. designed and constructed many aspects of the stable cavity system. A.D.L., L.S.M., and C.W.O. supervised this work. All authors contributed to the final manuscript.

Corresponding author

Correspondence to A. D. Ludlow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, Y., Ludlow, A., Lemke, N. et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nature Photon 5, 158–161 (2011). https://doi.org/10.1038/nphoton.2010.313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing