A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency


Single emitters have been considered as sources of single photons in various contexts, including cryptography, quantum computation, spectroscopy and metrology1,2,3. The success of these applications will crucially rely on the efficient directional emission of photons into well-defined modes. To accomplish high efficiency, researchers have investigated microcavities at cryogenic temperatures4,5, photonic nanowires6,7 and near-field coupling to metallic nano-antennas8,9,10. However, despite impressive progress, the existing realizations substantially fall short of unity collection efficiency. Here, we report on a theoretical and experimental study of a dielectric planar antenna, which uses a layered structure to tailor the angular emission of a single oriented molecule. We demonstrate a collection efficiency of 96% using a microscope objective at room temperature and obtain record detection rates of 50 MHz. Our scheme is wavelength-insensitive and can be readily extended to other solid-state emitters such as colour centres11,12 and semiconductor quantum dots13,14.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Emission properties of a vertically oriented dipole close to a dielectric planar antenna.
Figure 2: Photophysics of the single-photon source.
Figure 3: Angular distribution of the emission.


  1. 1

    Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

  2. 2

    Scheel, S. Single-photon sources—an introduction. J. Mod. Opt. 56, 141–160 (2009).

  3. 3

    Polyakov, S. V. & Migdall, A. L. Quantum radiometry. J. Mod. Opt. 56, 1045–1052 (2009).

  4. 4

    Pelton, M. et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

  5. 5

    Strauf, S. et al. High-frequency single-photon source with polarization control. Nature Photon. 1, 704–708 (2007).

  6. 6

    Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

  7. 7

    Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

  8. 8

    Chang, D. E., Sorensen, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of single emitters to surface plasmons. Phys. Rev. B. 76, 035420 (2007).

  9. 9

    Chen, X. W., Sandoghdar, V. & Agio, M. Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett. 9, 3756–3761 (2009).

  10. 10

    Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

  11. 11

    Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

  12. 12

    Simpson, D. A. et al. A highly efficient two level diamond based single photon source. Appl. Phys. Lett. 94, 203107 (2009).

  13. 13

    Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

  14. 14

    Ward, M. B. et al. On-demand single-photon source for 1.3 µm telecom fiber. Appl. Phys. Lett. 86, 201111 (2005).

  15. 15

    Koyama, K., Yoshita, M., Baba, M., Suemoto, T. & Akiyama, H. High collection efficiency in fluorescence microscopy with a solid immersion lens. Appl. Phys. Lett. 75, 1667–1669 (1999).

  16. 16

    Lukosz, W. & Kunz, R. E. Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. J. Opt. Soc. Am. 67, 1615–1619 (1977).

  17. 17

    Brokmann, X., Giacobino, E., Dahan, M. & Hermier, J. P. Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals. Appl. Phys. Lett. 85, 712–714 (2004).

  18. 18

    Balanis, C. A. Antenna Theory (Wiley-Interscience, 2005).

  19. 19

    Luan, L. et al. Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space. Appl. Phys. Lett. 89, 031119 (2006).

  20. 20

    Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998).

  21. 21

    Chen, X., Choy, W. C. H. & He, S. Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes. J. Disp. Technol. 3, 110–117 (2007).

  22. 22

    Pfab, R. J. et al. Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl. Chem. Phys. Lett. 387, 490–495 (2004).

  23. 23

    Fleury, L., Segura, J. M., Zumofen, G., Hecht, B. & Wild, U. P. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 (2000).

  24. 24

    Buchler, B. C., Kalkbrenner, T., Hettich, C. & Sandoghdar, V. Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys. Rev. Lett. 95, 063003 (2005).

  25. 25

    Dorn, R., Quabis, S. & Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003).

  26. 26

    Ramachandran, S., Kristensen, P. & Yan, M. F. Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34, 2525–2527 (2009).

  27. 27

    Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010).

  28. 28

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  29. 29

    Zumofen, G., Mojarad, N. M., Sandoghdar, V. & Agio, M. Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101, 180404 (2008).

  30. 30

    Celebrano, M. et al. Efficient coupling of single photons to single plasmons. Opt. Express 18, 13829–13835 (2010).

Download references


The authors acknowledge financial support from the Swiss National Foundation (SNF) and ETH Zurich (QSIT). Thanks also go to M. Agio and G. Zumofen for helpful discussions and E. Ikonen for fruitful exchange regarding the potential of single-photon sources for metrology.

Author information

K.G.L. and H.E. performed the experiments reported here. P.K., R.L. and K.G.L. suggested and performed the first experiments. X.W.C. suggested the use of layered structures and performed the calculations. A.R., S.G. and V.S. supervised the project. S.G. and V.S. wrote the paper.

Correspondence to S. Götzinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, K., Chen, X., Eghlidi, H. et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nature Photon 5, 166–169 (2011). https://doi.org/10.1038/nphoton.2010.312

Download citation

Further reading