Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit

Abstract

High-resolution nonlinear laser spectroscopy based on absorption saturation, Lamb-dip and spectral hole-burning phenomena has contributed much to basic and applied photonics. Here, a laser spectroscopy based on nonlinear nanobubble-related photothermal and photoacoustic phenomena is presented. It shows ultrasharp resonances and dips up to a few nanometres wide in broad plasmonic spectra of nanoparticles. It also demonstrates narrowing of absorption spectra of dyes and cellular chromophores, as well as an increase in the sensitivity and resolution of the spectral hole-burning technique. This approach can permits the study of nonlinear plasmonics at a level of resolution beyond the spectral limits, the identification of weakly absorbing spectral holes, spectral optimization of photothermal nanotherapy, measurements of tiny red and blue resonance shifts in nanoplasmonic sensors, the use of negative contrast in photoacoustic technique, multispectral imaging and multicolour cytometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenomenological model of nonlinear PT/PA spectroscopy.
Figure 2: Nonlinear spectra of gold nanorods.
Figure 3: Ultrasharp resonances in gold-based nanoparticles and quantum dots.
Figure 4: Sharpening of PT spectra of cells.
Figure 5: PA and conventional absorption spectra of dyes.

Similar content being viewed by others

References

  1. Lamb, W. E. Theory of an optical maser. Phys. Rev. 134, A1429–A1450 (1964).

    Article  ADS  Google Scholar 

  2. Letokhov, V. S. Nonlinear high resolution laser spectroscopy. Science 190, 344–351 (1975).

    Article  ADS  Google Scholar 

  3. Zharov, V. P. & Letokhov, V. S. Laser Optoacoustic Spectroscopy (Springer-Verlag, 1986).

    Book  Google Scholar 

  4. Demtröder, W. Laser Spectroscopy: Basic Principles 4th edn (Springer, 2008).

    Google Scholar 

  5. Moerner, W. E. & Bjorklund, G. C. Persistent Spectral Hole-Burning: Science and Applications (Springer-Verlag, 1988).

    Book  Google Scholar 

  6. Stietz, F. et al. Decay times of surface Plasmon excitation in metal nanoparticles by persistent spectral hole burning. Phys. Rev. Lett. 24, 5644–5647 (2000).

    Article  ADS  Google Scholar 

  7. Kazakevich, P. V., Simakin, A. V. & Shafeev, G. A. Laser burning of a gap in the spectrum of plasmon resonance of gold nanoparticles. Chem. Phys. Lett. 421, 348–350 (2006).

    Article  ADS  Google Scholar 

  8. Giljohann, D. A. & Mirkin, C. A. Drivers of biodiagnostic development. Nature 462, 461–464 (2009).

    Article  ADS  Google Scholar 

  9. Larson, D. R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).

    Article  ADS  Google Scholar 

  10. Kobayashi, H. et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 7, 1711–1716 (2007).

    Article  ADS  Google Scholar 

  11. Vo-Dinh, T., Wang, H. N. & Scaffidi, J. Plasmonic nanoprobes for SERS biosensing and bioimaging. J. Biophoton. 3, 89–102 (2010).

    Article  Google Scholar 

  12. Chen, K., Liu, Y., Ameer, G. & Backman, V. Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels. J. Biomed. Opt. 10, 024005 (2005).

    Article  ADS  Google Scholar 

  13. Khlebtsov, B. & Khlebtsov, N. Ultrasharp light-scattering resonances of structured nanospheres: effects of size-dependent dielectric functions. J. Biomed. Opt. 11, 044002 (2006).

    Article  ADS  Google Scholar 

  14. Bell, A. G. On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880).

    Article  ADS  Google Scholar 

  15. Boccara, A. C., Foumier, D. & Badoz, J. Thermo-optical spectroscopy: detection by the mirage effect. Appl. Phys. Lett. 36, 130–132 (1980).

    Article  ADS  Google Scholar 

  16. Zharov, V. P. & Montanari, S. G. Capillar chromatography with laser optothermal detection. Laser Chem. 5, 133–142 (1985).

    Article  Google Scholar 

  17. Shibata, M. M., Kitamori, T. & Sawada, T. Application of coaxial beam photothermal microscopy to analysis of a single biological cell in water. Anal. Chim. Acta 299, 343–347 (1995).

    Article  Google Scholar 

  18. Lapotko, D., Kuchinsky, G., Potapnev, M. & Pechkovsky, D. Photothermal image cytometry of human neutrophils. Cytometry 24, 198–203 (1996).

    Article  Google Scholar 

  19. Boyer, D. et al. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).

    Article  ADS  Google Scholar 

  20. Zharov, V. P. & Lapotko, D. O. Photothermal imaging of nanoparticles and cells. IEEE J. Sel. Top. Quantum Electron. 11, 733–751 (2005).

    Article  ADS  Google Scholar 

  21. Tanaka, Y. et al. Biological cells on microchips: new technologies and applications. Biosens. Bioelectron. 23, 449–458 (2007).

    Article  Google Scholar 

  22. Cognet, L., Berciaud, S., Lasne, D. & Lounis, B. Photothermal methods for single nonluminescent nano-objects. Anal. Chem. 80, 2288–2294 (2008).

    Article  Google Scholar 

  23. Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nature Photon. 3, 503–509 (2009).

    Article  ADS  Google Scholar 

  24. Mallidi, S. et al. Multiwavelength photoacoustic imaging and plasma resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett. 9, 2825–2831 (2009).

    Article  ADS  Google Scholar 

  25. Rasansky, D. et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nature Photon. 3, 412–417 (2009).

    Article  ADS  Google Scholar 

  26. Zharov, V. Far-field photothermal microscopy beyond the diffraction limit. Opt. Lett. 28, 1314–1316 (2003).

    Article  ADS  Google Scholar 

  27. Beilin, E. et al. Investigation of laser-induced acoustic effects in water and their influence on cell structure. Akustichesky Zhurnal (Soviet Physics Acoustics) 33, 344–349 (1987).

    Google Scholar 

  28. Zharov, V. P. & Latyshev, A. S. Laser combined medical technologies from Russia. J. Laser Appl. 11, 80–90 (1999).

    Article  ADS  Google Scholar 

  29. Diebold, G. J., Khan, M. I. & Park, S. M. Photoacoustic ‘signatures’ of particulate matter: optical production of acoustic monopole radiation. Science 250, 101–104 (1990).

    Article  ADS  Google Scholar 

  30. Egerev, S. et al. Acoustic signals generated by laser-irradiated metal nanoparticles. Appl. Opt. 48, 38–45 (2009).

    Article  ADS  Google Scholar 

  31. Zharov, V., Galitovsky, V. & Viegas, M. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl. Phys. Lett. 83, 4897–4899 (2003).

    Article  ADS  Google Scholar 

  32. Zharov, V., Malinsky, T. & Richard, K. Photoacoustic tweezers with a pulsed laser: theory and experiments. J. Phys. D 38, 2662–2674 (2005).

    Article  ADS  Google Scholar 

  33. Galanzha, E. I., Shashkov, E. V., Spring, P., Suen, J. Y. & Zharov, V. P. In vivo noninvasive label-free detection and eradication of circulating metastatic melanoma cells by two-color photoacoustic flow cytometry and a diode laser. Cancer Res. 69, 7926–7934 (2009).

    Article  Google Scholar 

  34. Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nature Nanotech. 12, 855–860 (2009).

    Article  ADS  Google Scholar 

  35. Li, P. C. et al. Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642–1647 (2007).

    Article  Google Scholar 

  36. Hirsch, L. R. et al. Metal nanoshells. Ann. Biomed. Eng. 34, 15–22 (2006).

    Article  Google Scholar 

  37. Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008).

    Article  Google Scholar 

  38. Pissuwan, D., Valenzuela, S. M. & Cortie, M. B. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24, 62–67 (2006).

    Article  Google Scholar 

  39. Kim, J.-W., Galanzha, E. I., Shashkov, E. V., Moon, H.-M. & Zharov, V. P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nature Nanotech. 4, 688–694 (2009).

    Article  ADS  Google Scholar 

  40. Zharov, V. P., Kim, J.-W., Everts, M. & Curiel, D. T. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and therapy. J. Nanomed. 1, 326–345 (2005).

    Article  Google Scholar 

  41. Yang, X., Stein, E. W., Ashkenazi, S. & Wang, L. V. Nanoparticles for photoacoustic imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 360–368 (2009).

    Article  Google Scholar 

  42. Aguirre, C. M., Moran, C. E., Young, J. F. & Halas, N. J. Laser induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination. J. Phys. Chem. B 108, 7040–7045 (2004).

    Article  Google Scholar 

  43. Chang, S.-S. et al. The shape transition of gold nanorods. Langmuir 15, 701–709 (1999).

    Article  Google Scholar 

  44. Link, S., Burda, C., Nikoobakht, B. & El-Sayed, M. A. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104, 6152–6163 (2000).

    Article  Google Scholar 

  45. Akchurin, G. et al. Gold nanoshell photomodification under single nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology 19, 015701 (2008).

    Article  ADS  Google Scholar 

  46. Zharov, V., Galitovskiy, V., Lyle, C. S. & Chambers, T. C. Super high-sensitive photothermal monitoring of individual cell response to antitumor drug. J Biomed. Opt. 11, 06403 (2006).

    Google Scholar 

  47. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    Article  ADS  Google Scholar 

  48. Lee, H., Alt, C., Pitsillides, C. M. & Lin, C. P. Optical detection of intracellular cavitation during selective laser targeting of the retinal pigment epithelium: dependence of cell death mechanism on pulse duration J. Biomed. Opt. 12, 064034 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01EB000873, R01CA131164, R01EB009230, R21EB0005123 and R21CA139373) and the National Science Foundation (DBI-0852737). I would like to thank J.-W. Kim for providing golden carbon nanotubes, N. Khlebtsov for providing gold nanorods and nanoshells, A. Wang for providing conjugated quantum dots, D. Lapotko for help with building the first (Supplementary Fig. S2a) PT microscope, E.V. Shashkov, D.A. Nedosekin and S. Fergusson for their assistance with laser measurements, Jian-Hui Ye for sample preparation, and E.I. Galanzha, M. Sarimollaoglu and W. Gabello for help with preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

V.P.Z. proposed the concept of nonlinear PT and PA spectroscopy in 2005, performed its experimental verifications with the help of colleagues in 2005–2009, and wrote the paper.

Corresponding author

Correspondence to Vladimir P. Zharov.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zharov, V. Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit. Nature Photon 5, 110–116 (2011). https://doi.org/10.1038/nphoton.2010.280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing