Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time full-field arbitrary optical waveform measurement

Abstract

The development of a real-time optical waveform measurement technique with quantum-limited sensitivity, unlimited record lengths and an instantaneous bandwidth scalable to terahertz frequencies would be beneficial in the investigation of many ultrafast optical phenomena. Currently, full-field (amplitude and phase) optical measurements with a bandwidth greater than 100 GHz require repetitive signals to facilitate equivalent-time sampling methods or are single-shot in nature with limited time records. Here, we demonstrate a bandwidth- and time-record scalable measurement that performs parallel coherent detection on spectral slices of arbitrary optical waveforms in the 1.55 µm telecommunications band. External balanced photodetection and high-speed digitizers record the in-phase and quadrature-phase components of each demodulated spectral slice, and digital signal processing reconstructs the signal waveform. The approach is passive, extendable to other regions of the optical spectrum, and can be implemented as a single silicon photonic integrated circuit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the real-time OAWM technique.
Figure 2: Details of the arrangement used to demonstrate OAWM.
Figure 3: Example OAWM measurement of a train of transform-limited pulses (waveform A) with an overall sawtooth amplitude envelope (0.5-µs period).
Figure 4: OAWM measurement of a 10 GHz train of pulses with cubic spectral phase (waveform B).
Figure 5: Comparison to a well-established measurement technique.
Figure 6: OAWM measurement data for a complicated waveform pattern.

Similar content being viewed by others

References

  1. Takiguchi, K., Okamoto, K., Kominato, T., Takahashi, H. & Shibata, T. Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit. Electron. Lett. 40, 537–538 (2004).

    Article  Google Scholar 

  2. Mandai, K., Suzuki, T., Tsuda, H., Kurokawa, T. & Kawanishi, T. Arbitrary optical short pulse generator using a high-resolution arrayed-waveguide grating. IEEE Topical Meeting on Microwave Photonics 107–110 (2004).

  3. Jiang, Z., Huang, C.-B., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photon. 1, 463–467 (2007).

    Article  ADS  Google Scholar 

  4. Scott, R. P. et al. Rapid updating of optical arbitrary waveforms via time-domain multiplexing. Opt. Lett. 33, 1068–1070 (2008).

    Article  ADS  Google Scholar 

  5. Dorrer, C. High-speed measurements for optical telecommunication systems. IEEE J. Sel. Top. Quantum Electron. 12, 843–858 (2006).

    Article  ADS  Google Scholar 

  6. Li, G. Recent advances in coherent optical communication. Adv. Opt. Photon. 1, 279–307 (2009).

    Article  Google Scholar 

  7. Yu, J. & Zhou, X. Multilevel modulations and digital coherent detection. Opt. Fiber Technol. 15, 197–208 (2009).

    Article  ADS  Google Scholar 

  8. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  9. Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  10. Schikora, S., Wunsche, H. J. & Henneberger, F. All-optical noninvasive chaos control of a semiconductor laser. Phys. Rev. E 78, 025202 (2008).

    Article  ADS  Google Scholar 

  11. Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).

    Book  Google Scholar 

  12. Dorrer, C. & Joffre, M. Characterization of the spectral phase of ultrashort light pulses. Comptes Rendus de l'Académie des Sciences, Series IV (Physics-Astrophysics) 2, 1415–1426 (2001).

    Article  ADS  Google Scholar 

  13. O'Shea, P., Kimmel, M., Gu, X. & Trebino, R. Highly simplified device for ultrashort-pulse measurement. Opt. Lett. 26, 932–934 (2001).

    Article  ADS  Google Scholar 

  14. Panasenko, D. & Fainman, Y. Single-shot sonogram generation for femtosecond laser pulse diagnostics by use of two-photon absorption in a silicon CCD camera. Opt. Lett. 27, 1475–1477 (2002).

    Article  ADS  Google Scholar 

  15. Fontaine, N. K., Scott, R. P., Heritage, J. P. & Yoo, S. J. B. Near quantum-limited, single-shot coherent arbitrary optical waveform measurements. Opt. Express 17, 12332–12344 (2009).

    Article  ADS  Google Scholar 

  16. Supradeepa, V. R., Leaird, D. E. & Weiner, A. M. Single shot amplitude and phase characterization of optical arbitrary waveforms. Opt. Express 17, 14434–14443 (2009).

    Article  ADS  Google Scholar 

  17. Reid, D. T. & Cormack, I. G. Single-shot sonogram: a real-time chirp monitor for ultrafast oscillators. Opt. Lett. 27, 658–660 (2002).

    Article  ADS  Google Scholar 

  18. Dorrer, C. Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning. Opt. Lett. 31, 540–542 (2006).

    Article  ADS  Google Scholar 

  19. Bennett, C. V. Ultrafast time scale transformation and recording utilizing parametric temporal imaging. Digest of the IEEE/LEOS Summer Topical Meetings 180–181 (IEEE, 2007).

    Chapter  Google Scholar 

  20. Lepetit, L., Chériaux, G. & Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995).

    Article  ADS  Google Scholar 

  21. Chu, K. C. et al. Direct measurement of the spectral phase of femtosecond pulses. Opt. Lett. 20, 904–906 (1995).

    Article  ADS  Google Scholar 

  22. Iaconis, C. & Walmsley, I. A. Self-referencing spectral interferometry for measuring ultrashort optical pulses. IEEE J. Quantum Electron. 35, 501–509 (1999).

    Article  ADS  Google Scholar 

  23. Asghari, M. H., Park, Y. & Azaña, J. Real-time spectral interferometry for single-shot complex-field linear characterization of sub-nanosecond long ultrafast optical signals. 22nd Annual Meeting of the IEEE Photonics Society Technical Digest (CD) (IEEE, 2009).

  24. Kornelis, W. et al. Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 28, 281–283 (2003).

    Article  ADS  Google Scholar 

  25. Bowlan, P. et al. Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time. Opt. Express 14, 11892–11900 (2006).

    Article  ADS  Google Scholar 

  26. Dorrer, C., Belabas, N., Likforman, J.-P. & Joffre, M. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J. Opt. Soc. Am. B 17, 1795–1802 (2000).

    Article  ADS  Google Scholar 

  27. Han, Y. & Jalali, B. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations. J. Lightwave Technol. 21, 3085–3103 (2003).

    Article  ADS  Google Scholar 

  28. Chou, J., Sefler, G. A., Conway, J., Valley, G. C. & Jalali, B. 4-channel continuous-time 77 GSa/s ADC using photonic bandwidth compression. 2007 IEEE International Topical Meeting on Microwave Photonics 54–57 (IEEE, 2007).

  29. Taylor, M. G. Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photon. Technol. Lett. 16, 674–676 (2004).

    Article  ADS  Google Scholar 

  30. Kazovsky, L., Welter, R., Elrefaie, A. F. & Sessa, W. Wide-linewidth phase diversity homodyne receivers. J. Lightwave Technol. 6, 1527–1536 (1988).

    Article  ADS  Google Scholar 

  31. Davis, A., Pettitt, M., King, J. & Wright, S. Phase diversity techniques for coherent optical receivers. J. Lightwave Technol. 5, 561–572 (1987).

    Article  ADS  Google Scholar 

  32. Savory, S. J., Gavioli, G., Killey, R. I. & Bayvel, P. Electronic compensation of chromatic dispersion using a digital coherent receiver. Opt. Express 15, 2120–2126 (2007).

    Article  ADS  Google Scholar 

  33. Kikuchi, K. Electronic post-compensation for nonlinear phase fluctuations in a 1,000-km 20-Gbit/s optical quadrature phase-shift keying transmission system using the digital coherent receiver. Opt. Express 16, 889–896 (2008).

    Article  ADS  Google Scholar 

  34. Lyons, R. G. Understanding Digital Signal Processing 2nd edn (Prentice Hall PTR, 2004).

    Google Scholar 

  35. Velazquez, S. R., Nguyen, T. Q., Broadstone, S. R. & Roberge, J. K. A hybrid filter bank approach to analog-to-digital conversion. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis 116–119 (IEEE, 1994).

  36. Ding, G., Dehollain, C., Declercq, M. & Azadet, K. Frequency-interleaving technique for high-speed A/D conversion. Proceedings of the 2003 International Symposium on Circuits and Systems (ISCAS '03) 857–860 (IEEE, 2003).

  37. Pupalaikis, P. J. Digital Bandwidth Interleaving Technical Report (LeCroy, 2005).

    Google Scholar 

  38. Agrawal, G. P. Lightwave Technology: Components and Devices (John Wiley & Sons, 2004).

    Google Scholar 

  39. Fujiwara, M., Kani, J., Suzuki, H., Araya, K. & Teshima, M. Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation. Electron. Lett. 37, 967–968 (2001).

    Article  Google Scholar 

  40. Sakamoto, T., Kawanishi, T. & Izutsu, M. Asymptotic formalism for ultraflat optical frequency comb generation using a Mach–Zehnder modulator. Opt. Lett. 32, 1515–1517 (2007).

    Article  ADS  Google Scholar 

  41. Scott, R. P. et al. High-fidelity line-by-line optical waveform generation and complete characterization using FROG. Opt. Express 15, 9977–9988 (2007).

    Article  ADS  Google Scholar 

  42. Fontaine, N. K. et al. Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation. Opt. Lett. 33, 1714–1716 (2008).

    Article  ADS  Google Scholar 

  43. Yuen, H.P. & Chan, V. W. S. Noise in homodyne and heterodyne detection. Opt. Lett. 8, 177–179 (1983).

    Article  ADS  Google Scholar 

  44. Schumaker, B. L. Noise in homodyne detection. Opt. Lett. 9, 189–191 (1984).

    Article  ADS  Google Scholar 

  45. Quinlan, F., Ozharar, S., Gee, S. & Delfyett, P. J. Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources. J. Opt. A 11, 103001 (2009).

    Article  ADS  Google Scholar 

  46. Soref, R. The past, present and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).

    Article  ADS  Google Scholar 

  47. Yoo, S. J. B. Future prospects of silicon photonics in next generation communication and computing systems. Electron. Lett. 45, 584–588 (2009).

    Article  Google Scholar 

  48. Doerr, C. R. et al. Monolithic silicon coherent receiver. National Fiber Optic Engineers Conference OSA Technical Digest (CD) paper PDPB2 (Optical Society of America, 2009).

  49. Cheben, P. et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt. Express 15, 2299–2306 (2007).

    Article  ADS  Google Scholar 

  50. Sun, H., Wu, K.-T. & Roberts, K. Real-time measurements of a 40 Gb/s coherent system. Opt. Express 16, 873–879 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to recognize J. Lowell, E. Ippen, B. Jacobs and E. Parra for their constant encouragement and enlightening discussions and also thank Tektronix for the loan of equipment. This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) and the Space and Naval Warfare Command (SPAWAR) under OAWG contract no. HR0011-05-C-0155.

Author information

Authors and Affiliations

Authors

Contributions

Data were collected by N.K.F. and R.P.S. and analysed by N.K.F. The experiment was designed by N.K.F. and R.P.S. The OAWM concept was conceived by N.K.F. with contributions from R.P.S., J.P.H. and S.J.B.Y. The OAWM PLC was designed by L.Z. and F.M.S. The manuscript was prepared by N.K.F. and R.P.S. with contributions from J.P.H. and S.J.B.Y. S.J.B.Y. supervised and coordinated all work.

Corresponding author

Correspondence to Nicolas K. Fontaine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontaine, N., Scott, R., Zhou, L. et al. Real-time full-field arbitrary optical waveform measurement. Nature Photon 4, 248–254 (2010). https://doi.org/10.1038/nphoton.2010.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing