Abstract
Recent years have seen significant progress in the field of soft- and hard-X-ray microscopy, both technically, through developments in source, optics and imaging methodologies, and also scientifically, through a wide range of applications. While an ever-growing community is pursuing the extensive applications of today's available X-ray tools, other groups are investigating improvements in techniques, including new optics, higher spatial resolutions, brighter compact sources and shorter-duration X-ray pulses. This Review covers recent work in the development of direct image-forming X-ray microscopy techniques and the relevant applications, including three-dimensional biological tomography, dynamical processes in magnetic nanostructures, chemical speciation studies, industrial applications related to solar cells and batteries, and studies of archaeological materials and historical works of art.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Attwood, D. T. Soft X-rays and extreme ultraviolet radiation: Principles and applications Ch. 1–9 (Cambridge Univ., 1999).
Kirkpatrick, P. & Baez, A. V. Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766–773 (1948).
Baez, A. V. Fresnel zone plate for optical image formation using extreme ultraviolet and soft X radiation. J. Opt. Soc. Am. 51, 405–412 (1961).
Schmahl, G. (ed.) X-ray microscopy. Proc. Int. Symp. (Springer, 1983).
Sayre, D., Howells, M., Kirz, J. & Rarback, H. (eds) X-ray Microscopy II. Proc. Int. Symp. (Upton, 1987).
Kirz, J., Jacobsen, C. & Howells, M. Soft X-ray microscopes and their biological applications. Q. Rev. Biophys. 28, 33–130 (1995).
Aoki, S. (ed.) Proc. 8th Int. Conf. X-ray Microscopy (IPAP, 2005).
Eichert, D. et al. Imaging with spectroscopic micro-analysis using synchrotron radiation. Anal. Bioanal. Chem. 389, 1121–1132 (2007).
David, C. (ed.) Proc. 9th Int. Conf. X-ray Microscopy (IOP, 2008).
Schmahl, G. & Rudolph, D. Lichtstarke zonenplatten als abbildende systeme für weiche Röntgenstrahlung. Optik 29, 577–585 (1969).
Niemann, B., Rudolph, D. & Schmahl, G. X-ray microscopy with synchrotron radiation. Appl. Opt. 15, 1883–1884 (1976).
Rarback, H. et al. Scanning X-ray microscope with 75-nm resolution. Rev. Sci. Instrum. 59, 52–59 (1988).
Kirz, J. et al. X-ray microscopy with the NSLS soft X-ray undulator. Phys. Scripta T31, 12–17 (1990).
Ojeda-Castañeda, J. & Gomez-Reino, C. (eds.) Selected papers on zone plates (SPIE, 1996).
Vila-Comamala, J. et al. Advanced thin film technology for ultrahigh resolution X-ray microscopy. Ultramicroscopy 109, 1360–1364 (2009).
Chao, W., Kim, J., Rekawa, S., Fischer, P. & Anderson, E. H. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy. Opt. Express 17, 17669–17677 (2009).
Schwarzschild, K. Untersuchungen zur geometrischen optic II. Astronomische Mitteilungen der Kniglichen Sternwarte zu Göttingen. 10, 4–28 (1905).
Cerrina, F. et al. Maximum: A scanning photoelectron microscope at Aladdin. Nucl. Instrum. Meth. A 266, 303–307 (1988).
Wolter, H. Spiegelsystems streifenden einfalls als abbildende optiken für Röntgenstralen. Ann. Physik 10, 94–114 (1952).
Aoki, S. in X-ray Microscopy II (ed. Sayre, D.) 102 (Springer, 1988).
Mimura, H. et al. Breaking the 10 nm barrier in hard-X-ray focusing. Nature Phys. 6, 122–125 (2010).
Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high energy X-rays. Nature 384, 49–51 (1996).
Snigirev, A., Kohn, V., Snigireva, I., Souvorov, A. & Lengeler, B. Focusing high-energy X-rays by compound refractive lenses. Appl. Opt. 37, 653–662 (1998).
Bosak, A., Snigireva, I., Napolskii, K. S. & Snigirev, A. High-resolution transmission X-ray microscopy: A new tool for mesoscopic naterials. Adv. Mater. 22, 3256–3259 (2010).
Yin, G.-C. et al. Sub-30 nm resolution X-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope. Appl. Phys. Lett. 89, 221122 (2006).
Chapman, H. N. & Nugent, K. A. Coherent lensless X-ray imaging. Nature Photon. 4, 833–839 (2010).
Vila-Comamala, J. et al. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography. Nanotechnology 21, 285305 (2010).
Maser, J. et al. Near-field stacking of zone plates for hard X-ray range. Proc. SPIE 4783, 74–81 (2002).
Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005).
Kang, H. C. et al. Focusing of hard X-rays to 16 nanometers with a multilayer Laue lens. Appl. Phys. Lett. 92, 221114 (2008).
Yan, H. X-ray nanofocusing by kinoform lenses: A comparative study using different modeling approaches. Phys. Rev. B. 81, 075402 (2010).
Matsuyama, S. et al. Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick–Baez mirror optics. Rev. Sci. Instrum. 77, 103102 (2006).
Zeng, X. et al. Ellipsoidal and parabolic glass capillaries as condensers for X-ray microscopes. Appl. Opt. 47, 2376–2381 (2008).
Born, M. & Wolf, E. Principles of Optics (Cambridge Univ., 1999).
Jochum, L. & Meyer-Ilse, W. Partially coherent image formation with X-ray microscopes. Appl. Opt. 34, 4944–4950 (1995).
Yin, G. C. et al. Energy-tunable transmission X-ray microscope for differential contrast imaging with near 60 nm resolution tomography. Appl. Phys. Lett. 88, 241115 (2006).
von Hofsten, O. et al. Sub-25 nm laboratory X-ray microscopy using a compound Fresnel zone plate. Opt. Lett. 34, 2631–2633 (2009).
Schmahl, G., Rudolph, D., Schneider, G., Guttmann, P. & Niemann, B. Phase contrast X-ray microscopy studies. Optik 97, 181–182 (1994).
Schmahl, G. et al. Phase contrast studies of biological specimens with the X-ray microscope at BESSY. Rev. Sci. Instrum. 66, 1282–1286 (1995).
Yokosuka, H. et al. Zernike-type phase-contrast hard X-ray microscope with a zone plate at the Photon Factory. J. Synchrotron Rad. 9, 179–181 (2002).
Youn, H. S. & Jung, S.-W. Hard X-ray microscopy with Zernike phase contrast. J. Microsc. 223, 53–56 (2006).
Sakdinawat, A. & Liu, Y. Phase contrast soft X-ray microscopy using Zernike zone plates. Opt. Express 16, 1559–1564 (2008).
Wilhein, T., Kaulich, B., Di Fabrizio, E. & Romanato, F. Differential interference contrast X-ray microscopy with submicron resolution. Appl. Phys. Lett. 78, 2082–2084 (2001).
Kaulich, B. et al. Differential interference contrast X-ray microscopy with twin zone plates. J. Opt. Soc. Am. A 19, 797–806 (2002).
Di Fabrizio, E. et al. Diffractive optical elements for differential interference contrast X-ray microscopy. Opt. Express 11, 2278–2288 (2003).
Chang, C., Sakdinawat, A., Fischer, P., Anderson, E. H. & Attwood, D. T. Single-element objective lens for soft X-ray differential interference contrast microscopy. Opt. Lett. 31, 1564–1566 (2006).
Sakdinawat, A. & Liu, Y. Soft-X-ray microscopy using spiral zone plates. Opt. Lett. 32, 2635–2637 (2007).
Attwood, D., Kim, K.-J. & Halback, K. Tunable Coherent Radiation. Science 228, 1265–1272 (1985).
Tyliszczak, T., Kilcoyne, A., Warwick, A., Liddle, A. & Shuh, D. High spatial resolution scanning transmission X-ray microscope at the Advanced Light Source. Proc. 8th Int. X-ray Microscopy Conf. 88 (IPAP, 2006).
Barinov, A. et al. Synchrotron-based photoelectron microscopy. Nucl. Instrum. Meth. A 601, 195–202 (2009).
Thompson, A. & Underwood, J. H. in Soft X-rays and Extreme Ultraviolet Radiation 117 (Cambridge Univ., 1999).
Stampononi, M. et al. Trends in synchrotron-based tomographic imaging: the SLS experience. Proc. SPIE 6318, 63180M (2006).
Requena, G. et al. Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick-Baez optics. Scripta Mater. 61, 760–763 (2009).
Stampanoni, M. et al. Phase-contrast tomography at the nanoscale using hard X-rays. Phys. Rev. B. 81, 140105 (2010).
Thole, B. T., Carra, P., Sette, F. & van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946 (1992).
Stöhr, J. & Siegmann, H. C. Magnetism: from Fundamentals to Nanoscale Dynamics (Springer, 2006).
Schutz, G., Goerning, E. & Stoll, H. in Handbook of Magnetism and Advanced Magnetic Materials (eds. Kronmueller, H. & Parkin, S.) 1309–1363 (Wiley, 2007).
Kim, K.-J. Polarization characteristics of synchrotron radiation sources and a new two undulator system. Nucl. Instrum. Meth. 222, 11–13 (1984).
Hofmann, A. The Physics of Synchrotron Radiation (Cambridge Univ., 2007).
Pfau, B. et al. Magnetic imaging at linearly polarized X-ray sources. Opt. Express 18, 13608–13615 (2010).
Mesler, B. L., Fischer, P., Chao, W., Anderson, E. H. & Kim, D.-H. Soft X-ray imaging of spin dynamics at high spatial and temporal resolution. J. Vac. Sci. Technol. B 25, 2598–2602 (2007).
Underwood, J. H., Thompson, A., Wu, Y. & Giauque, R. D. X-ray microprobe using multilayer mirrors. Nucl. Instrum. Meth. A 266, 296–303 (1988).
Buonassisi, T. et al. Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells. J. Appl. Phys. 97, 074901 (2005).
Buonassisi, T. et al. Engineering metal-impurity nanodefects for low-cost solar cells. Nature Mater. 4, 676–679 (2005).
Liu, Y. et al. Applications of hard X-ray full-field transmission X-ray microscopy at SSRL. Proc. 10th Int. Conf. X-ray Microscopy (ed. McNulty, I.) (American Institute of Physics Conference Proceedings, in the press).
Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).
Hell, S. W. & Kruog, M. Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995).
Beetz, T. & Jacobsen, C. Soft X-ray radiation damage studies in PMMA using a cryo-STXM. J. Synchrotron Rad. 10, 280–283 (2003).
Weiss, D. et al. Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy 84, 185–197 (2000).
McDermott, G., Le Gros, M. A., Knoechel, C., Uchida, M. & Larabell, C. A. Soft X-ray tomography and cryogenic light microscopy: The cool combination in cellular imaging. Trends Cell Biol. 19, 587–595 (2009).
Schneider, G. et al. 3D cellular ultrastructure resolved by a partially-coherent X-ray microscope. Nat. Methods (in the press).
Larabell, C. A. & Le Gros, M. A. X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60 nm resolution. Mol. Biol. Cell 15, 957–962 (2004).
Le Gros, M. A., McDermott, G. & Larabell, C. A. X-ray tomography of whole cells. Curr. Opin. Struc. Biol. 15, 593–600 (2005).
Meyer-Ilse, W. et al. High resolution protein localization using soft X-ray microscopy. J. Microsc. 201, 395–403 (2001).
Stampanoni, M. et al. in Advancements in Neurological Research (ed. Zhang, J. H.) 315–335 (Research Signpost, 2008).
Brown, G. E. & Sturchio, N. C. An overview of synchrotron radiation applications to low temperature geochemistry and environmental science. Rev. Mineral. Geochem. 49, 1–115 (2002).
Skinner, L. B., Chae, S. R., Benmore, C. J., Wenk, H. R. & Monteiro, P. J. M. Nanostructure of calcium silicate hydrates in cements. Phys. Rev. Lett. 104, 195502 (2010).
Kurtis, K. E., Monteiro, P. J. M., Brown, J. T. & Meyer-Ilse, W. Imaging of ASR gel by soft X-ray microscopy. Cement Concrete Res. 28, 411–421 (1998).
Monteiro, P. J. M. et al. Characterizing the nano and micro structure of concrete to improve its durability. Cement Concrete Comp. 31, 577–584 (2009).
Kaulich, B. et al. Low-energy X-ray fluorescence microscopy opening new opportunities for bio-related research. J. Res. Soc. Interface 6, 641–647 (2009).
Tolra, R. et al. Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J. Plant Res. doi:10.1007/s10265-010-0344-3 (2010).
Obst, M. et al. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochim. Cosmochim. Ac. 73, 4180–4198 (2009).
Obst, M., Wang, J. & Hitchcock, A. P. Soft X-ray spectro-tomography study of cyanobacterial biomineral nucleation. Geobiology 7, 577–591 (2009).
Dynes, J. et al. Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ. Sci. Technol. 40, 1556–1565 (2006).
Cotte, M. Synchrotron-based X-ray spectromicroscopy used for the study of an atypical micrometric pigment in 16th century paintings. Anal. Chem. 79, 6988–6994 (2007).
Cotte, M., Susini, J., Dik, J. & Janssens, K. Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Accounts Chem. Res. 43, 705–714 (2010).
Janssens, K., Dik, J., Cotte, M. & Susini, J. Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Accounts Chem. Res. 43, 814–825 (2010).
Lahlil, S., Biron, I., Cotte, M., Susini, J. & Menguy, N. Synthesis of calcium antimonite nano-crystals by the 18th dynasty Egyptian glassmakers. Appl. Phys. A 98, 1–8 (2010).
Donaghue, P. et al. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442, 680–683 (2006).
Bergmann, U. et al. Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc. Natl Acad. Sci. USA 107, 9060–9065 (2010).
Bergmann, U. Archimedes brought to light. Phys. World 39–42 (November 2007).
Takman, P. A. C. et al. High-resolution compact X-ray microscopy. J. Microsc. 226, 175–181 (2007).
Bertilson, M., von Hofsten, O., Vogt, U., Holmberg, A. & Hertz, H. M. High-resolution computed tomography with a compact soft X-ray microscope. Opt. Express 17, 11057–11065 (2009).
Berglund, M., Rymell, L., Hertz, H. M. & Wilhein, T. Cryogenic liquid-jet target for debris-free laser-plasma soft X-ray generation. Rev. Sci. Instrum. 69, 2362–2364 (1998).
Hemberg, O., Otendal, M. & Hertz, H. M. Liquid-metal-jet anode electron-impact X-ray source. Appl. Phys. Lett. 83, 1483–1485 (2003).
Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).
Parkinson, D. Y., McDermott, G., Etkin, L. D., Le Gros, M. A. & Larabell, C. A. Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. J. Struct. Biol. 162, 380–386 (2008).
Acknowledgements
The authors acknowledge support from the US National Science Foundation, the Engineering Research Center for EUV Science and Technology, and the King Abdullah University of Science and Technology.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Sakdinawat, A., Attwood, D. Nanoscale X-ray imaging. Nature Photon 4, 840–848 (2010). https://doi.org/10.1038/nphoton.2010.267
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2010.267
This article is cited by
-
Free-electron interactions with van der Waals heterostructures: a source of focused X-ray radiation
Light: Science & Applications (2023)
-
Dose-efficient scanning Compton X-ray microscopy
Light: Science & Applications (2023)
-
CsPbBr3-DMSO merged perovskite micro-bricks for efficient X-ray detection
Nano Research (2023)
-
Making the Invisible Visible: Toward High-Quality Terahertz Tomographic Imaging via Physics-Guided Restoration
International Journal of Computer Vision (2023)
-
Simultaneous bright- and dark-field X-ray microscopy at X-ray free electron lasers
Scientific Reports (2023)