Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal solitons and pulse compression in photonic crystal waveguides

Abstract

Solitons are nonlinear waves that exhibit invariant or recurrent behaviour as they propagate. Precise control of dispersion and nonlinear effects governs soliton propagation and, through the formation of higher-order solitons, permits pulse compression. In recent years the development of photonic crystals—highly dispersive periodic dielectric media—has attracted a great deal of attention due to the facility to engineer and enhance both their nonlinear and dispersive effects. In this Article, we demonstrate the first experimental observations of optical solitons and pulse compression in 1-mm-long photonic crystal waveguides. Suppression of two-photon absorption in the GaInP material is crucial to these observations. Compression of 3-ps pulses to a minimum duration of 580 fs with a simultaneously low pulse energy of 20 pJ is achieved. These small-footprint devices open up the possibility of transferring soliton applications into integrated photonic chips.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dispersion and slow-light properties of the GaInP PhCWG sample.
Figure 2: Soliton-based pulse compression at coupled pulse energies of 22 pJ or less in 1.3-mm-long PhCWGs.
Figure 3: Measurements demonstrating optical soliton compression.
Figure 4: Comparison of nonlinear Schrödinger equation model with experimental data.
Figure 5: Measurements demonstrating optical soliton formation.

Similar content being viewed by others

References

  1. Zabusky, N. J. & Kruskal, M. D. Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965).

    Article  ADS  Google Scholar 

  2. Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).

    Article  ADS  Google Scholar 

  3. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

    Article  ADS  Google Scholar 

  4. Eggleton, B. J., Slusher, R. E., de Sterke, C. M., Krug, P. A. & Sipe, J. E. Bragg grating solitons. Phys. Rev. Lett. 76, 1627–1630 (1996).

    Article  ADS  Google Scholar 

  5. Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).

    Article  ADS  Google Scholar 

  6. Gerôme, F., Cook, K., George, A., Wadsworth, W. & Knight, J. Delivery of sub-100fs pulses through 8 m of hollow-core fiber using soliton compression. Opt. Express 15, 7126–7131 (2007).

    Article  ADS  Google Scholar 

  7. Dudley, J. M. & Taylor, J. R. Ten years of nonlinear optics in photonic crystal fibre. Nature Photon. 3, 85–90 (2009).

    Article  ADS  Google Scholar 

  8. Foster, M., Gaeta, A., Cao, Q. & Trebino, R. Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. Opt. Express 13, 6848–6855 (2005).

    Article  ADS  Google Scholar 

  9. Amorim, A. A. et al. Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers. Opt. Lett. 34, 3851–3853 (2009).

    Article  ADS  Google Scholar 

  10. Zhang, J. et al. Optical solitons in a silicon waveguide. Opt. Express 15, 7682–7688 (2007).

    Article  ADS  Google Scholar 

  11. Dadap, J. I. et al. Nonlinear-optical phase modification in dispersion-engineered Si photonic wires. Opt. Express 16, 1280–1299 (2008).

    Article  ADS  Google Scholar 

  12. Ding, W. et al. Solitons and spectral broadening in long silicon-on-insulator photonic wires. Opt. Express 16, 3310–3319 (2008).

    Article  ADS  Google Scholar 

  13. Nakazawa, M., Kimura, Y., Kurokawa, K. & Suzuki, K. Self-induced-transparency solitons in an erbium-doped fiber waveguide. Phys. Rev. A 45, R23–R26 (1992).

    Article  ADS  Google Scholar 

  14. Merghem, K. et al. Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser. Opt. Express 16, 10675–10683 (2008).

    Article  ADS  Google Scholar 

  15. Winful, H. Pulse compression in optical fiber filters. Appl. Phys. Lett. 46, 527–529 (1985).

    Article  ADS  Google Scholar 

  16. Slusher, R. E. & Eggleton, B. J. (eds) Nonlinear Photonic Crystals (Springer Verlag, 2003).

    Book  Google Scholar 

  17. Kivshar, Y. S. & Agrawal, G. P. Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003).

    Google Scholar 

  18. Millar, P. et al. Nonlinear propagation effects in an AlGaAs Bragg grating filter. Opt. Lett. 24, 685–687 (1999).

    Article  ADS  Google Scholar 

  19. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  ADS  Google Scholar 

  20. Monat, C. et al. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Opt. Express 17, 2944–2953 (2009).

    Article  ADS  Google Scholar 

  21. Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  22. McMillan, J. F., Yu, M., Kwong, D.-L. & Wong, C. W. Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides. Appl. Phys. Lett. 93, 251105 (2008).

    Article  ADS  Google Scholar 

  23. Husko, C. et al. Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides. Opt. Express 17, 22442–22451 (2009).

    Article  ADS  Google Scholar 

  24. Inoue, K., Oda, H., Ikeda, N. & Asakawa, K. Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect. Opt. Express 17, 7206–7216 (2009).

    Article  ADS  Google Scholar 

  25. Yeom, D. I. et al. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett. 33, 660–662 (2008).

    Article  ADS  Google Scholar 

  26. Lamont, M. R., Luther-Davies, B., Choi, D. Y., Madden, S. & Eggleton, B. J. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide. Opt. Express 16, 14938–14944 (2008).

    Article  ADS  Google Scholar 

  27. Grillet, C. et al. Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires. Opt. Express 14, 1070–1078 (2006).

    Article  ADS  Google Scholar 

  28. Suzuki, K., Hamachi, Y. & Baba, T. Fabrication and characterization of chalcogenide glass photonic crystal waveguides. Opt. Express 17, 22393–22400 (2009).

    Article  ADS  Google Scholar 

  29. Liao, M. et al. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation. Opt. Express 17, 12174–12182 (2009).

    Article  ADS  Google Scholar 

  30. Peccianti, M. et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt. Express 18, 7625–7633 (2010).

    Article  ADS  Google Scholar 

  31. Chen, W. & Mills, D. L. Gap solitons and the nonlinear optical response of superlattices. Phys. Rev. Lett. 58, 160–163 (1987).

    Article  ADS  Google Scholar 

  32. Aceves, A. B. & Wabnitz, S. Self-induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A 141, 37–42 (1989).

    Article  ADS  Google Scholar 

  33. Christodoulides, D. N. & Joseph, R. I. Slow Bragg solitons in nonlinear periodic structures. Phys. Rev. Lett. 62, 1746–1749 (1989).

    Article  ADS  Google Scholar 

  34. Sipe, J. E. & Winful, H. G. Nonlinear Schrödinger solitons in a periodic structure. Opt. Lett. 13, 132–133 (1988).

    Article  ADS  Google Scholar 

  35. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).

    Article  ADS  Google Scholar 

  36. Tran, Q. V., Combrié, S., Colman, P. & De Rossi, A. Photonic crystal membrane waveguides with low insertion losses. Appl. Phys. Lett. 95, 061105 (2009).

    Article  ADS  Google Scholar 

  37. Engelen, R. J. P., Mori, D., Baba, T. & Kuipers, L. Two regimes of slow-light losses revealed by adiabatic reduction of group velocity. Phys. Rev. Lett. 101, 103901 (2008).

    Article  ADS  Google Scholar 

  38. Hughes, S., Ramunno, L., Young, J. F. & Sipe, J. E. Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 94, 033903 (2005).

    Article  ADS  Google Scholar 

  39. Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2007).

  40. Bhat, N. A. R. & Sipe, J. E. Optical pulse propagation in nonlinear photonic crystals. Phys. Rev. E 64, 056604 (2001).

    Article  ADS  Google Scholar 

  41. Patterson, M. et al. Disorder-induced coherent scattering in slow-light photonic crystal waveguides. Phys. Rev. Lett. 102, 253903 (2009).

    Article  ADS  Google Scholar 

  42. Combrié, S., Tran, Q., De Rossi, A., Husko, C. & Colman, P. High quality GalnP nonlinear photonic crystals with minimized nonlinear absorption. Appl. Phys. Lett. 95, 221108 (2009).

    Article  ADS  Google Scholar 

  43. Mollenauer, L. F., Stolen, R. H., Gordon, J. P. & Tomlinson, W. J. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett. 8, 289–291 (1983).

    Article  ADS  Google Scholar 

  44. De Rossi, A., Conti, C. & Trillo, S. Stability, multistability, and wobbling of optical gap solitons. Phys. Rev. Lett. 81, 85–88 (1998).

    Article  ADS  Google Scholar 

  45. Claps, R., Dimitropoulos, D., Han, Y. & Jalali, B. Observation of Raman emission in silicon waveguides at 1.54 µm. Opt. Express 10, 1305–1313 (2002).

    Article  ADS  Google Scholar 

  46. Beausoleil, R. G., Kuekes, P. J., Snider, G. S., Wang, S. Y. & Williams, R. S. Nanoelectronic and nanophotonic interconnects. Proc. IEEE 96, 230–247 (2008).

    Article  Google Scholar 

  47. Rafailov, E. U., Cataluna, M. A. & Sibbett, W. Mode-locked quantum-dot lasers. Nature Photon. 1, 395–401 (2007).

    Article  ADS  Google Scholar 

  48. Kuntz, M., Fiol, G., Laemmlin, M., Meuer, C. & Bimberg, D. High-speed mode-locked quantum-dot lasers and optical amplifiers. Proc. IEEE 95, 1767–1778 (2007).

    Article  Google Scholar 

  49. Combrié, S., De Rossi, A., Tran, Q. V. & Benisty, H. GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 µm. Opt. Lett. 33, 1908–1910 (2008).

    Article  ADS  Google Scholar 

  50. Combrié, S. et al. Time-delay measurement in singlemode, low-loss photonic crystal waveguides. Electron. Lett. 42, 86–88 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Commission GOSPEL project (219299) and the French Research Agency project L2CP (S.C., P.C. and A.D.R.), the National Science Foundation CAREER Award (0747787) and ECCS (0725707) (C.A.H. and C.W.W.), the Fulbright Foundation (C.A.H.), and the New York State Foundation for Science, Technology and Innovation (C.W.W.). The authors acknowledge valuable discussions with E. Ippen, F. Kaertner, G. Eisentstein and S. Trillo. The authors thank Q.-V. Tran for his contributions to the development of the PhC technology in Thales, O. Parillaud, A. Shen and F. Van Dijk (Alcatel-Thales III–V Lab), K. Lasri and U. Ben Ami (Optisiv), and F. Raineri and R. Raj (CNRS-LPN).

Author information

Authors and Affiliations

Authors

Contributions

P.C., S.C., A.D.R. and C.H. performed the experiments. S.C. and I.S. fabricated the photonic chips, which were designed by S.C. and P.C. A.D.R., P.C. and C.H. performed the modelling. C.H., A.D.R. and C.W.W. prepared the manuscript. A.D.R., I.S. and C.W.W. supervised the project.

Corresponding authors

Correspondence to C. W. Wong or A. De Rossi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colman, P., Husko, C., Combrié, S. et al. Temporal solitons and pulse compression in photonic crystal waveguides. Nature Photon 4, 862–868 (2010). https://doi.org/10.1038/nphoton.2010.261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing